XFELo X-ray Cavity Feasibility Studies

Yuri Shvyd’ko
Content

- Technical challenges

- Feasibility studies:
 - reflectivity of diamond crystals
 - heat load problem
 - nanoradian angular stabilization
 - radiation damage

- Conclusions and Outlook
XFEL Oscillator

XFELO requires:
- ultra-low-emittance ($\varepsilon_n \lesssim 10^{-7}$ m rad) electron beams,
- low-loss x-ray crystal cavity (losses $\simeq 15\%$)

$R_1, R_2 > 95\%, T_1 \simeq 4\%$

Reflectivity of Si in backscattering

Reflectivity

Si @300 K

Si @120 K
Theory predicts highest reflectivity from diamond

Very high reflectivity (in theory) due to:

- High Debye Temperature, and thus high Debye-Waller factor
- Low Z, low photo absorption

Reflectivity

0 5 10 15
0.75
0.8
0.85
0.9
0.95
1.0

C
@300 K

E [keV]
Diamond cavity for the X-FEL Oscillator

\[R_A \times R_B \times R_{M_1} \times R_{M_2} \simeq 0.9 \]

\[T_A \simeq 0.04 \]
Diamond crystal and mirror reflectivity @ 12 keV

Narrow band mirrors: $\Delta E \approx 10$ meV; $\Delta E \approx \hbar/\tau_p$

$E_0 = 12.0404$ keV

C(4 4 4); L = 0.2 mm; T = 300 K

C(4 4 4); L = 0.042 mm; T = 300 K

Mirror calculations: www-cxro.lbl.gov
Two-Crystal Cavity is not Tunable

$E = E_H \cos \Theta \quad \Rightarrow \quad \text{Two-crystal scheme is not tunable.}$

Because, it is necessary to keep small $\phi \lesssim 2 \text{ mrad}$
and therefore small $\Theta \lesssim 2 \text{ mrad}$, for high reflectivity of the mirrors.
A four-crystal (A,B,C, and D) x-ray optical cavity allows photon energy \(E \) tuning in a broad range by changing the incidence angle \(\Theta \).

X-ray Optics:

- Quality of diamond crystals: is the theoretical reflectivity achievable?

- Heat load problem (reflection region variations $\lesssim 1$ meV).

- Angular stability: $\delta \theta \lesssim 10$ nrad (rms)

 Spatial stability: $\delta L \lesssim 3$ μm (rms) \rightarrow $\delta L/L \lesssim 3 \times 10^{-8}$

- Radiation damage
Quality of Diamond crystals
Quality of Diamond crystals

Required diamond crystals:

- high quality (dislocation free, etc.)
- thickness: 20 – 2000 µm
- small suffice: ≃ 1 mm²

Still open question: is the theoretical reflectivity achievable?

White beam topograph in transmission

Härtwig, 2008 (ESRF)

Dislocation free areas of 4x4mm² and more!!!

110-oriented plate
Experiments, 30-ID @ APS

- Undulator
- X-ray bandwidth: 100 eV
- C(111) cooled monochromator
 - Bandwidth: 1.7 eV

- 2 × Si(220) at 300 K
- Si(15 11 9) channel-cut at 300 K
- 2 × Si(220)
- T. Toellner

High-resolution monochromator
- Energy: E = 23.7 keV
- (111) reflection
- Θ = 2 × 10⁻⁴
- (995) reflection
- L ≈ 10 m
- APD diamond

Bandwidth
- ΔE ≈ 1 meV

Spectral Width and Reflectivity: Theory

$C(995), E_H = 23.765 \text{ keV}$

Reflectivity, R

$E - E_0, [\text{meV}]$

$R_{\text{theory}} = 91\%$

$\Delta E = 2.9 \text{ meV}$

$L_{\text{crystal}} = 415 \mu\text{m}$

Yu. Shvyd’ko

FLS2010, SLAC, March 1, 2010
Spectral Width and Reflectivity: Experiment

C(995), $E_H = 23.765$ keV

Beams footprint $\simeq 1 \text{ mm}^2$

Reflectivity, R

$\delta E = 1.5 \text{ meV}$

$\delta E = \frac{hc}{2L_{\text{crystal}}}$

$d_{\text{crystal}} = 415 \pm 5 \mu m$

$R_{\text{theory}} = 91\%$

$R_{\text{experiment}} = 87\%$

R, L, and ΔE are interconnected.

Smallness of ΔE is a hallmark of high quality crystal.
Spectral Width and Reflectivity Map

(a) Spectral width, $\Delta E/\Delta E_{\text{min}}$

(b) Reflectivity, R/R_{max}

Yu. Shvyd’ko

Argonne National Laboratory

FLS2010, SLAC, March 1, 2010
Synthetic diamond crystals are available with theoretically high reflectivity and sufficiently large in size for XFELO cavity applications.
Heat Load Problem
Heat Load Problem

Temperature gradient $\delta T \Rightarrow$ energy spread $\delta E/E = \beta \delta T$.

Requirement: $\delta E \lesssim 1$ meV, when the next pulse arrives.

Incident power $\simeq 50 \, \mu J$/pulse.
Absorbed power: $\simeq 1 \, \mu J$/pulse (2%).
Footprint: $\simeq 100 \times 100 \, \mu m^2$

Is it a problem?
Heat Load Problem

Temperature gradient $\delta T \Rightarrow$ energy spread $\delta E/E = \beta \delta T$.

Requirement: $\delta E \lesssim 1$ meV, when the next pulse arrives.

- Big temperature jump δT after the x-ray pulse arrival.
- $T=300K$: Big temperature spread by the arrival of heat.

H. Sinn simulations

Diamond Temperature T [K]

Photon Energy Spread δE [meV]
Heat Load Problem

Temperature gradient $\delta T \Rightarrow$ energy spread $\delta E/E = \beta\delta T$.

Requirement: $\delta E \lesssim 1$ meV, when the next pulse arrives.

- Big temperature jump δT after the x-ray pulse arrival.
- $T=300$K: Big temperature spread by the arrival of the next x-ray pulse.
- $T=100$K: Negligible temperature spread by the arrival of the next x-ray pulse.

H. Sinn simulations

Yu. Shvyd’ko

Argonne National Laboratory

FLS2010, SLAC, March 1, 2010
Heat Load Problem

Temperature gradient $\delta T \Rightarrow$ energy spread $\delta E/E = \beta \delta T$.

Requirement: $\delta E \lesssim 1$ meV, when the next pulse arrives.

- Big temperature jump δT after the x-ray pulse arrival.
- $T=300K$: Big temperature spread by the arrival of the next x-ray pulse.
- $T=100K$: Negligible temperature spread by the arrival of the next x-ray pulse.

Reasons:
1. High temperature diffusivity D
2. Low temperature expansion β

Solution: Maintain diamond at $T < 100$ K!
Diamond Thermal Expansion

Thermal expansion β, $[K^{-1}]$

- 10^{-9}
- 10^{-8}
- 10^{-7}
- 10^{-6}

Temperature T, $[K]$

Experiment 1 (March 09)
Experiment 2 (May 09)

4.0 $\times 10^{-14} T^3$

Polynomial fit

Stoupin, Shvyd’ko, PRL104, 085901 (2010)
Heat Load Problem

Temperature gradient $\delta T \Rightarrow$ energy spread $\delta E / E = \beta \delta T$.

Requirement: $\delta E \lesssim 1$ meV, when the next pulse arrives.

Solution: Maintain diamond at $T < 100$ K!
Angular & Spatial Stability

Required angular stability: $\delta \theta \lesssim 10 \text{ nrad (rms)}$

Required spatial stability: $\delta L \lesssim 3 \text{ \mu m (rms)} \Rightarrow \delta L/L \simeq 3 \times 10^{-8} \ (L = 100 \text{ m})$
Angular & Spatial Stability

Required angular stability: $\delta \theta \lesssim 10 \text{ nrad (rms)}$
Required spatial stability: $\delta L \lesssim 3 \mu\text{m (rms)} \Rightarrow \delta L/L \simeq 3 \times 10^{-8} \,(L = 100 \text{ m})$

Solution: **Null-detection hardware feedback.** (LIGO prototype)

X-ray intensity: linear response to small angular oscillations is proportional to angular deviation from the maximum of the rocking curve.
Angular & Spatial Stability

Required angular stability: $\delta \theta \lesssim 10 \text{ nrad (rms)}$

Required spatial stability: $\delta L \lesssim 3 \text{ \(\mu\)m (rms)} \Rightarrow \delta L/L \simeq 3 \times 10^{-8} (L = 100 \text{ m})$

Solution: Null-detection hardware feedback. (LIGO prototype)

X-ray intensity: linear response to small angular oscillations is proportional to angular deviation from the maximum of the rocking curve.

Feedback: correction signal is extracted using lock-in amplification.
HERIX Monochromator Stability Region

- Intensity [a.u.]
- Voltage [V]
- Region of stability $\Delta \theta = 50$ nrad
- FWHM $\Delta \theta = 500$ nrad
- ± 75 mV

Yu. Shvyd’ko

FLS2010, SLAC, March 1, 2010
HERIX Monochromator Stabilization

T. Toellner, D. Shu

Yu. Shvyd’ko

FLS2010, SLAC, March 1, 2010
HERIX Monochromator Stabilization

\[\theta_3 \]

\[\Theta_0 \]

\[\Theta_1 \]

\[\approx 15 \text{ nrad (rms)} \] stabilization was demonstrated

Stoupin, Lenkszus, Laird, Goetze, K-J Kim, Shvyd’ko, RSI (submitted)

Yu. Shvyd’ko

FLS2010, SLAC, March 1, 2010
Radiation damage in diamond
Radiation damage in diamond

XFEL0 generates:

50µJ/pulse @ 12 keV with \(\simeq 1 \) MHz rep. rate

Footprint: \(A = 1.6 \times 10^{-4} \text{ cm}^2 \) (rms)

Flux \(\simeq 2 \times 10^{20} \text{ ph/s/cm}^2 \)

Time to ionize carbon atom with 100% probability: \(T \simeq 250 \text{ s} \)

Can this produce irreversible changes in the perfect crystal lattice structure?
Radiation damage in diamond

XFEL0 generates:

$50 \mu J/pulse @ 12 \text{ keV with } \simeq 1 \text{ MHz rep. rate}$

Footprint: $A = 1.6 \times 10^{-4} \text{ cm}^2$ (rms)

Flux $\simeq 2 \times 10^{20} \text{ ph/s/cm}^2$

Time to ionize carbon atom with 100% probability: $T \simeq 250 \text{ s}$

Robin Santra

APS undulators generate:

Flux $\simeq 5 \times 10^{17} \text{ ph/s/cm}^2$

Time to ionize carbon atom with 100% probability: $T' \simeq 10^5 \text{ s} \simeq 1 \text{ day}$

Graphitization of the surface layer of the diamond crystal is observed after several days of operations. Though, no significant degradation in the performance of the high-heat-load monochromator is observed after a year of operations.
How to mitigate radiation damage in diamond?

- Operate diamond at cryogenic temperatures.
- Use isotopically pure ^{12}C crystals. Laser damage threshold is more than order of magnitude higher for isotopically pure diamond. Anthony et al, PRB, 42 1104 (1990)
- Apply electric fields to keep the electrons in diamond (K-J. Kim)
-
X-ray Optics:

- **Quality of diamond crystals:**
 is the theoretical reflectivity achievable? ✓

- **Heat load problem:** reflection region variations $\lesssim 1$ meV. ✓

- **Angular stability:** $\delta \theta \lesssim 10$ nrad (rms) ✓
 Spatial stability: $\delta L \lesssim 3$ μm (rms) \rightarrow $\delta L/L \lesssim 3 \times 10^{-8}$

- **Radiation damage** ?

Yu. Shvyd’ko
FLS2010, SLAC, March 1, 2010
Acknowledgments

XFELO collaboration:

Kwang-Je Kim (APS)
Stanislav Stoupin (APS)
Ryan Lindberg (APS)
Sven Reiche (SLS)
Bill Fawley, (LBNL)
Frank Lenkszus (APS)
Deming Shu (APS)
Harald Sinn (European XFEL)

Thanks to:

Robert Winarski (APS)
Tim Graber (APS)
Robert Laird (APS)
Stan Whitcomb (LIGO)
Al Macrander (APS)
Tim Roberts (APS)
Kurt Goetze (APS)
Emil Trakhtenberg (APS)
Ayman Said (APS)
Alessandro Cunsolo (APS)
Tom Toellner (APS)
Lahsen Assoufid (APS)