Considerations for seeded FELs in ERLs

David Douglas, Michelle Shinn & Steve Benson
Jefferson Lab

48th ICFA Advanced Beam Dynamics Workshop on Future Light Sources
March 1-5, 2010
SLAC

Work supported by the Joint Technology Office, the Office of Naval Research, the Air Force Research Laboratory, the Army Night Vision Laboratory, the Commonwealth of Virginia, the U.S. Dept. of Energy under contract DE-AC05-06OR23177 and the Laser Processing Consortium
Outline

• Rationale for using ERL driver
• System requirements
• Expected performance
• Notional test implementation
• Conclusions: issues/challenges
1st Reaction: “Why Bother?”

- Seeded systems \(\sim 1\ \text{kHz}\)
 - \(\Rightarrow 1\ \mu\text{A} \text{ at } 1\ \text{nC}:\) only 1 kW beam at 1 GeV;

 However… There are mitigating factors:

- Seed rep rates are expected to increase
 - 1 kHz \(\rightarrow\) 10 (100) kHz anticipated
 - self-seeding schemes forthcoming

 will raise required drive beam power

- ERL can simultaneously service *multiple* FELs – including those with different architecture (xfelo, SASE) & requiring higher drive beam power

- Cost trade isn’t between straight linac & ERL, its between recirculator & ERL
More Nuanced Consideration

• Must consider
 – Goals of facility (numbers & requirements of users, provision for simultaneous service, monochromatic/technicolor operation,…)
 – Detailed cost optimization
 – Anticipated technology development over facility lifetime (esp. seed laser, self-seeding methods)

• *If*
 – the machine is to serve multiple simultaneous users, at different wavelengths, with useful gymnastics (pump/probe, etc), and multiple types of FEL, or
 – performance evolves to provide high-rep-rate seeding, *use of seeded FELs in ERLs becomes interesting*
Calibration: Machine Architectures

• Recirculating linacs
 – SRF is expensive, beam transport is cheap:
 1 pass < cost optimum < \infty \text{ passes}
 • multipass engenders:
 – beam dynamic sensitivity (beam quality),
 – operational complexity

• ERLs:
 – RF drive is expensive, beam transport is cheap
 – Cost optimum occurs when
 cost of single (return) arc < cost of linac RF power
 • 1 \text{nC} \times 1 \text{MHz} \times 1 \text{GeV} = 1 \text{MW} \Rightarrow 10 \text{ M$}$
 • Additional operational complexity
ERL-Specific “Features”

- Cost optimization a bit complex
 - ERLs can drive several FELs – potentially at same time, so $($/FEL) \propto (1/\text{multiplicity})$
 - $\propto (1/\text{passes})$
 - RF costing influenced by total # Watts, CW vs. pulsed

- ERLs are inherently CW devices
 - Avoids transients associated with pulsed power
 - Supports high multiplicity
 - Forces use of lower gradient
 - Changes beam dynamics

- Longitudinal matching (bunch compression & energy recovery processes) differ from conventional linac
 - Typically no harmonic RF (curvature correct with 6-, 8-poles)
 - Think “accelerate then compress”, not “compress, then accelerate”
 - Beam quality preservation issues slightly (subtly) different
System Requirements

Consider an ERL-driven FEL; it must

- deliver appropriately configured drive beam of adequate quality to FEL(s):
 - Bunch compression (multistage)
 - Beam quality preservation
 - Multi-FEL distribution
 - Stability, synchronization, jitter mitigation
- recover beam(s) to provide RF power
 - Recombine (merge) multiple output beams for recovery
 - Manage large energy spread/energy compress during energy recovery? – *depends on FEL performance*
FEL Constraints on e⁻ Beam

System dependent, but will involve the usual suspects:

- Angular jitter and position drift
 - Must be smaller than bunch size (~ 40 microns rms)
 - Implies ~10 μrad rms angular jitter, 10 μm position jitter
- Temporal jitter
 - Peak-to-peak temporal jitter plus the seed-pulse full-width must be less than the length of the core of the electron bunch.
- Emittance
 - Must satisfy the emittance requirement
 \[\varepsilon_N < \frac{\gamma\lambda}{4\pi} \]
- Energy jitter
 - Have to keep energy jitter much less than the Pierce parameter \(\rho \)
- Energy spread
 - Have to keep less than \(\rho \) for fundamental seeding but want even smaller spread for HGHG
FEL Performance

- Estimates (SB; 600 MeV/10 nm HHG seeding w 200 pC beam)
 - $\eta_{\text{FEL}} \sim 1/2\%$
 - High CW power
 - $\Delta E/E_{\text{exhaust}} \sim 3\%$
 - Tens of MeV at \sim GeV energy scale \Rightarrow care needed during energy recovery (especially in multipass system)
Notional Test Implementation
Candidate seed laser and undulator schematic

- The seed laser will reside in a temperature-stabilized hutch on the level above the accelerator vault.
- Beam is routed to HHG source using standard JLab transport components.
Candidate seed laser

- After discussions with a number of laser vendors, the system is currently specified using a KM Labs RedDragon™ system
 - This is somewhat customized (e.g. synchronization) for our applications.
 - Timing jitter is the limit of their measuring capability. Believe it to be lower. (Needs to be measured)
 - Angular stability within the specs of their HHG system.
 - Pulse energy permits direct seeding (with 10-40 nJ pulses) at 108 eV
 - At higher PRFs (10 kHz) we can seed at 36 eV and use HGHG to 108 eV
 - Pre and post pulse contrast ratios high enough to not contaminate the

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse energy (mJ)</td>
<td>40</td>
</tr>
<tr>
<td>Pulsed width (fs)</td>
<td><25</td>
</tr>
<tr>
<td>Rep rate (Hz)</td>
<td>1000</td>
</tr>
<tr>
<td>Amplitude stability (%)</td>
<td><1</td>
</tr>
<tr>
<td>Angular stability (µrad)</td>
<td><20</td>
</tr>
<tr>
<td>Timing jitter (fs)</td>
<td><200/fs</td>
</tr>
</tbody>
</table>
Seed laser optical transport system requirements are met using existing hardware

- JLab optical transport system had measured performance of 20 μrad pointing stability and beam drift of less than a mm using a collimator (3 reflections) and 5 single turning mirror assemblies.
- We will use 2 mirror assemblies and an active beam position monitoring system to maintain the seed laser’s beam performance.
- High bandwidth of seed laser requires attention to bandwidth and GVD of windows and lenses.
Challenges

• Drive Laser:
 – Pointing stability & position drift; Long term amplitude stability
 – Very high rejection (aka contrast ratio) of unused laser pulses
 • Very low seed rep rate cf. high drive laser fundamental
• e- beam: beam quality preservation issues
• Diagnostics:
 – Time structure may be >10 kHz with single pulses.
 • BPMs must resolve this structure
 • May need to see jitter at this high a frequency
 • Have to compensate RF loading at very high speed.
 – Average current may be fairly low. Bunch length monitor may have to be more sensitive.
• Stability, synchronism, jitter mitigation…
Laser – e beam synchronization

• Generic challenge of synchronizing a 25 fs seed laser pulse with a 100 fs e beam

• ERL (recirculating linac) geometry provides time-of-flight advantage
 – Allows feed-back over much shorter distance than beam path

 • Circulation time \(\sim 0.4 \text{ \mu sec} \)
Synchronization
FEL-Seeded
ERL-Driven XFEL

Two bunch trains
UV seed, XFEL drive
RF separation in 1st pass
UV bypass $\lambda_{RF}/2$ longer
(recovers bunch train)

Issues:
SYNCHRONISM
UV seed pulse energy,
up-conversion
GERBAL

- Machine configuration:

- Transverse optics
Conclusions

• Due to the low rep rate relative to the linac RF frequency, seeded FELs in an ERL-based accelerator impose different requirements on their hardware relative to an oscillator-based FEL
 – Requires a higher contrast ratio (achievable) on drive laser pulses in order to minimize the effects of ghost pulses.
• Requires a high level of synchronism between photon and electron pulses
• Low beam loading make ERL unnecessary today – but provide opportunities for tomorrow:
 – Service to multiple FELs of multiple architectures
 – Leverage evolution in seed lasers/seeding schemes
 – FEL-seeded FELs?
Perspective

- Rings – very advanced systems – equivalent to nanotechnology or rocket science.

- "conventional" FELs – perhaps not as advanced, but still very sophisticated – like cathedrals or bridges.

- ERLs – in infancy (or "terrible twos"…) – stone knives and animal skins.

But at least ERLs are so easy!