Optics for Soft X-ray Seeding of LCLS-II
- Grating and Mirrors

Y. Feng, J. Wu, M. Rowen, P. Heimann,
J. Krzywinski, J. Hastings, et al.
Outline

- Motivations
- Requirements
 - Input FEL parameters
 - Transform-limited pulses
 - Seeding power
- X-ray optics
 - Grazing-incidence Grating Monochromator
 - Fixed-focal point operation
 - Resolving power
 - Efficiency
 - Mirrors
 - Pre-mirror
 - Vertically focusing mirror
 - Horizontal focusing mirror
- Ray-tracing results
- Summary
Motivations

- SASE FEL temporal characteristics
 - Coherence time \ll pulse duration

6 Å SASE FEL spectrum at 26 m in the first undulator

$\tau_c \sim 12$ fs

Goal \Rightarrow make temporally fully coherent pulses
Requirements

- **Input FEL parameters**
 - **Energy range**
 - 200 – 2000 eV
 - **Pulse length**
 - 200 eV: 34 fs rms*, peak current 1 kA
 - 2000 eV: 12 fs rms*, peak current 3 kA
 - **Pulse energy**
 - 200 eV: 1.2 µJ, peak power ~ 10 MW
 - 2000 eV: 40 µJ, peak power ~ 1 GW
 - **e-beam size**
 - 200 eV: 50 µm rms†
 - 2000 eV: 15 µm rms†

*Note: FWHM = √12 rms
†Note: FWHM = 2.354 rms
Requirements

- Input FEL parameters (cont’d)
 - X-ray beam size
 - Energy dependent
 - Loosely speaking
 \[w_0 \sim w_e \sim \sqrt{\varepsilon} \]
 - Transversely fully coherent
 - Gaussian optics necessary
 - X-ray pulse length
 - “Design goal” pulse length
 - Maximum pulse length
 - Afforded by optics to be transform-limited

![Grating Performance for Fixed Focus](image1)

![Grating Performance for Fixed Focus](image2)
Requirements

- Rigorous definition for transform-limited pulses

\[\sigma_t \cdot \sigma_\omega \geq \frac{1}{2} \quad \sigma_t, \sigma_\omega \text{ are rms values} \]

- For a (temporal) Gaussian beam

\[\sigma_t \cdot \sigma_\omega = \frac{1}{2} \]
\[\sigma_t \cdot \Delta \omega_{FWHM} = \sqrt{2 \ln 2} \]
\[\Delta \omega_{FWHM} = \frac{\sqrt{2 \ln 2}}{\sigma_t} \]
\[R = \frac{\lambda}{\Delta \lambda_{FWHM}} = \frac{\omega}{\Delta \omega_{FWHM}} = \frac{\pi}{2 \ln 2} \frac{\Delta T_{FWHM}}{T} = 2.266 \frac{\Delta T_{FWHM}}{T} \]

- For a (temporal) flat-top beam

\[\sigma_t \cdot \Delta \omega_{FWHM} = 1.607 \]
\[\Delta \omega_{FWHM} = \frac{1.607}{\Delta T_{FWHM} / \sqrt{12}} \]
\[R = \frac{\lambda}{\Delta \lambda_{FWHM}} = \frac{\omega}{\Delta \omega_{FWHM}} = \frac{2\pi}{1.607 \sqrt{12}} \frac{\Delta T_{FWHM}}{T} = 1.129 \frac{\Delta T_{FWHM}}{T} \]
Requirements

Performance requirements

- Resolving power to make pulse fully transform-limited, assuming flat-top profile
 - 200 eV
 - $\Delta T_{\text{FWHM}} = 117.78 \text{ fs}$
 - $R = 6428$
 - 2000 eV
 - $\Delta T_{\text{FWHM}} = 41.57 \text{ fs}$
 - $R = 22689$

- Seeding power after all optics
 - 200 eV: $> 10 \text{ kW}$
 - 2000 eV: $> 20 \text{ kW}$

- Seeding beam collinear w/ original beam
 - Transverse profile preserved if possible

- Time delay
 - $\sim 10 \text{ ps}$
 - Variable delay in tuning range is acceptable if within 10%
Operational requirements

- Energy tuning should be simple
- Use fewer gratings as possible
 - Use one or two gratings to cover entire energy range if possible
 - Design has just one grating
- Use fewer mirrors as possible
 - Reflection loss minimized
 - Easy alignment
 - Alignment easily maintained during energy tuning
- Use fewer and simpler mechanical motion as possible
 - Keep incident angle constant if possible especially for curved-mirrors
 - Use simple not convoluted motions if possible
- Optical components
 - Cylindrical horizontal focusing M_1
 - Focusing at re-entrant point
 - Planar pre-mirror M_2
 - Varying incident angle to grating G
 - Planar variable-line-spacing grating G
 - Focusing at exit slit
 - Exit slit S
 - Spherical vertical focusing mirror M_3
 - Re-collimate at re-entrant point
Grating Monochromator

Grating Equation

\[\sigma (\cos \theta - \cos \theta') = n \lambda \]

Since \(\theta \) and \(\theta' \) are both arbitrary, special conditions relating \(\theta \) and \(\theta' \) can be imposed for special modes of operation

- **Constant incidence angle mode**
 \[\theta = \text{const.} \]

- **Constant included angle mode**
 \[\alpha + \beta = \text{const.} \]

- **Constant focal-point mode**
 \[\frac{\cos \beta}{\cos \alpha} = \frac{1}{\kappa} = \text{const.} \]

Grating \(\Rightarrow \) Angular dispersion

Focusing is needed for obtaining resolving power
Variable Line Spacing Grating

- **VLS focusing**
 - **Focusing condition**
 - **Linear coefficient**
 \[
 \frac{\Delta \sigma}{\Delta x} = \frac{\sigma^2}{\lambda} \left[-\frac{\cos^2 \alpha}{r} - \frac{\cos^2 \beta}{r'} \right]
 \]
 - \(r, r'\) are positive
 - **If operate in fixed focal-point mode**
 - \(\Delta \sigma / \Delta x\) weakly energy dependent
 - Can only have a fixed linear coeff.
 - Defocusing effect (to be discussed)
 - No impact on resolving power
 - Big impact on transverse profile

Grating Performance for Fixed Focus

<table>
<thead>
<tr>
<th>Energy (eV)</th>
<th>(-1.560E-07)</th>
<th>(-1.558E-07)</th>
<th>(-1.556E-07)</th>
<th>(-1.554E-07)</th>
<th>(-1.552E-07)</th>
<th>(-1.550E-07)</th>
<th>(-1.548E-07)</th>
<th>(-1.546E-07)</th>
</tr>
</thead>
</table>

- Small angle (high energy) limit
- Required for exact fixed focal-point

\[\Delta \sigma / \Delta x = \frac{\sigma^2}{\lambda} \left[-\frac{\cos^2 \alpha}{r} - \frac{\cos^2 \beta}{r'} \right] \]
Fixed focal-point mode

\[\sigma (\sin \alpha - \sin \beta) = n \lambda \]

\[\frac{\cos \beta}{\cos \alpha} = \frac{1}{\kappa} = 5.939 > 1 \]

- \(\sigma = 0.45 \, \mu m \, (2222 \, l/mm) \)
- \(n = 1 \)

“Fixed” focal-point
- “Fixed” exit slit
- Included angle \(\alpha + \beta \) variable
 - Rotation of pre-mirror
 - Rotation of grating

Use outside order
- Smaller \(\theta \) for larger footprint

![Diagram showing incident angle \(\theta \), exit angle \(\theta' \), and critical angles for Si, B\(_4\)C, and Be.]
Resolving Power

- Contributions
 - Quadrature addition of all terms
 - # of grating grooves
 - Size of incident beam
 - Footprint
 - Entrance slit
 - Slit-less, defined by incident beam
 - Exit slit
 - Image size
 - Slit settings
 - Slope error of optics

![Graph showing effective resolving power vs. energy](image-url)
Coherent Beam Propagation

- Use Gaussian beam propagation as 1st order approx.
- Formulated based on ABCD matrix for ray-optics

\[
\begin{bmatrix}
A_{\text{total}} & B_{\text{total}} \\
C_{\text{total}} & D_{\text{total}}
\end{bmatrix} =
\begin{bmatrix}
1 & r & A & 0 \\
0 & 1 & C & 1/A
\end{bmatrix}
\begin{bmatrix}
1 & r' \\
0 & 1
\end{bmatrix}
\]

\[
A + Cr' \quad Ar + Crr' + r'/A
\]

\[
C \quad 1/A + Cr
\]

\[
\begin{bmatrix}
-M & 0 \\
-1/f_t & -1/M
\end{bmatrix}
\]

\[
A = \frac{\cos \beta}{\cos \alpha} = \frac{1}{\kappa}
\]

\[
C = \frac{\Delta \sigma(\lambda)}{\sigma^2 \cos \alpha \cos \beta} = \left(\frac{\kappa + 1}{r \kappa r'} \right) = -\frac{1}{f_t}
\]

\[
M = \frac{\cos \alpha r'}{\cos \beta r}
\]
Coherent Beam Propagation

- (Total) ABCD matrix for Gaussian beam
 - Waist location \(\delta r \)
 - Rayleigh length \(z_R \)

\[
\delta r' - i z_R' = \left[\frac{A(\delta r - i z_R) + B}{C(\delta r - i z_R) + D} \right]_{\delta r = 0}
\]

\[
z_R = \frac{\pi w_0^2}{\lambda}
\]

\[
\delta r'(\lambda) = \left[\frac{(A \delta r + B)(C \delta r + D) + AC z_R^2}{(C \delta r + D)^2 + (C z_R)^2} \right]_{\delta r = 0}
\]

\[
z_R' = \left[\frac{- (A \delta r + B)C z_R + (C \delta r + D)A z_R}{(C \delta r + D)^2 + (C z_R)^2} \right]_{\delta r = 0}
\]

\[
z_R' = \frac{\pi w_0'^2}{\lambda}
\]

\[
M_{\text{Gaussian}}(\lambda) = \sqrt{\frac{z_R'}{z_R}} = \left[\frac{- (A \delta r + B)C + (C \delta r + D)A}{(C \delta r + D)^2 + (C z_R)^2} \right]_{\delta r = 0}
\]
Coherent Beam Propagation

ABCD matrix for Gaussian beam w/ const. $\Delta \sigma / \Delta x$

\[
\delta r' = i z_R' = \frac{A(\lambda)(-i z_R) + B(\lambda)}{C(\lambda)(-i z_R) + D(\lambda)}
\]

\[
\delta r'(\lambda) = \frac{B(\lambda)D(\lambda) + A(\lambda)C(\lambda)z_R^2}{[D(\lambda)]^2 + [C(\lambda)z_R]^2}
\]

\[
z_R' = \frac{-B(\lambda)C(\lambda)z_R + D(\lambda)A(\lambda)z_R}{[D(\lambda)]^2 + [C(\lambda)z_R]^2}
\]

\[
M_{\text{Gaussian}}(\lambda) = \sqrt{\frac{-B(\lambda)C(\lambda) + D(\lambda)A(\lambda)}{[D(\lambda)]^2 + [C(\lambda)z_R]^2}}
\]
Dispersion Plane

- Optical components
 - Deflecting mirror
 - Pre-mirror
 - VLS Grating
 - Collimation mirror

![Dispersion Plane Diagram]

<table>
<thead>
<tr>
<th>Energy (eV)</th>
<th>L_1</th>
<th>L_{M1M2}</th>
<th>r_{M2G}</th>
<th>r_G'</th>
<th>r_{M3}</th>
<th>r_{M3}'</th>
<th>$\Delta L_{Re-entrant}$</th>
<th>r_{total}</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 eV</td>
<td>13.761030</td>
<td>4.204372</td>
<td>0.036709</td>
<td>5.981053</td>
<td>0.351780</td>
<td>1.993796</td>
<td>1.656204</td>
<td>27.984945</td>
</tr>
<tr>
<td>2000 eV</td>
<td>13.761030</td>
<td>3.901582</td>
<td>0.339127</td>
<td>6.021674</td>
<td>0.311159</td>
<td>3.400840</td>
<td>0.249160</td>
<td>27.984572</td>
</tr>
</tbody>
</table>
Beam Size in Dispersion Plane

- Beam size evolution
 - Grating
 - \(w_0 \) object
 - \(w_0' \) image
 - \(z_R \)
 - \(r'(\lambda) \)
 - \(\delta r'(\lambda) \)
 - \(r'_{\text{non-coherent}} \)
 - Collimation mirror
 - \(w_0 \) object
 - \(w_0' \) image
 - \(z_R' \)
 - \(r'_{\text{non-coherent}} \)

Grating Performance for Fixed Focus

- Source
- Ray-optics
- Re-entrant point

Photon Division
X-ray Science Department
Time Delay

Optical delay
- Variable when tuning energy
 - ~ 10 ps +/- 10%
 - Variation Minimized by optimize Π

![Grating Performance for Fixed Focus](image)

- δT (ps)
- Energy (eV)

ξ

γ

Π

H'

H

η

ξ

γ

Π

H'

H

η
Sagittal Plane

- **Optical components**
 - (Sagittally) Focusing mirror
 - Deflecting pre-mirror
 - Deflecting VLS Grating
 - Deflecting collimation mirror

Table

<table>
<thead>
<tr>
<th></th>
<th>L_1</th>
<th>r^\prime_{M1}</th>
<th>$\Delta r_{\text{Re-entrant}}$</th>
<th>r_{total}</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 eV</td>
<td>13.761030</td>
<td>13.731681</td>
<td>0.492233</td>
<td>27.984945</td>
</tr>
<tr>
<td>2000 eV</td>
<td>13.761030</td>
<td>14.247250</td>
<td>-0.023708</td>
<td>27.984572</td>
</tr>
</tbody>
</table>
Beam Size in Sagittal Plane

- Beam size evolution
 - Focusing mirror

![Diagram showing beam size evolution and focusing mirror](image)

Grating Performance for Fixed Focus

- at designed location (ray-optics)
- re-entrant point
- source

Graph showing energy (eV) vs. beam size (µm)
Optimization of groove depth

For square wave lamella

\[
\eta_\lambda = \left(\frac{2}{m\pi} \right)^2 \sin^2 \left(\frac{\delta}{2} \right)
\]

\[
R_\lambda \approx R_\lambda \left(\frac{2\theta}{2} \right)
\]

\[
\delta = \frac{2\pi}{\lambda} (\cos \alpha + \cos \beta) \cdot h
\]

\[
\delta_{\text{peak}} = Q = m\pi, \text{ where } m = \pm 1, \pm 3, \ldots
\]

\[
\eta_{\text{peak}} = \left(\frac{2}{m\pi} \right)^2 \sin^2 \left(\frac{Q}{2} \right)
\]

\[h_{\text{peak}} \text{ only good for one energy}\]

\[
\delta(\lambda) = \frac{2\pi}{\lambda} (\cos \alpha + \cos \beta) \cdot h_{\text{peak}}
\]

\[
\frac{\eta(\lambda)}{R_\lambda(\alpha, \beta)} = \left(\frac{2}{m\pi} \right)^2 \sin^2 \left(\frac{\delta(\lambda)}{2} \right)
\]
Grating Efficiency

- Overall throughput
 - $M_1 \sim 100\%$
 - $M_2 \sim 100\%$
 - $G \sim R_\lambda \cdot \eta_\lambda \cdot b \sim 0.2\% - 0.005\%$
 - Reflectivity R_λ
 - Estimated grating efficiency η_λ
 - Bandwidth factor b
 - Beam size mismatch (very small)
 - $M_3 \sim 100\%$
- More rigorous calculations
 - Done by J. Krzywinski*
 - η_λ agrees with estimate at 2000 eV
 - η_λ 1/3 of estimate at 200 eV
 - Feature at 450 eV is evident

*Derived by solving Helmholtz equation in *inhomogeneous media*, in paraxial approximation

Photon Division

X-ray Science Department
Seeding Power

- Output power
 - \(p_{\text{output}} \sim p_{\text{input}} \cdot R_{\lambda} \cdot \eta_{\lambda} \cdot b \)
 - Estimates indicate goal is met
 - Simple amplitude grating estimate
 - J.K. rigorous calculation

![Graph showing grating performance for fixed focus](image)
Optics Specs

Grating specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>symbol</th>
<th>value</th>
<th>unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line spacing</td>
<td>σ</td>
<td>0.45</td>
<td>μm</td>
</tr>
<tr>
<td>Linear coeff</td>
<td>$\Delta\sigma/\Delta x$</td>
<td>-1.5527x10^{-7}</td>
<td></td>
</tr>
<tr>
<td>Groove height</td>
<td>h</td>
<td>4.984</td>
<td>nm</td>
</tr>
<tr>
<td>Grating profile</td>
<td></td>
<td>Lamella/Steps</td>
<td></td>
</tr>
<tr>
<td>Incident angle</td>
<td>θ</td>
<td>8.963 – 28.26</td>
<td>mrad</td>
</tr>
<tr>
<td>Exit angle</td>
<td>θ'</td>
<td>53.3 – 168.6</td>
<td>mrad</td>
</tr>
<tr>
<td>Included angle</td>
<td>2θ</td>
<td>176.4 – 168.7</td>
<td>degree</td>
</tr>
<tr>
<td>Object distance</td>
<td>L_{obj}</td>
<td>~ 18</td>
<td>m</td>
</tr>
<tr>
<td>Image distance</td>
<td>L_{img}</td>
<td>~ 6</td>
<td>m</td>
</tr>
<tr>
<td>Exit slit</td>
<td>s</td>
<td>4 – 13</td>
<td>μm</td>
</tr>
</tbody>
</table>

Photon Division
X-ray Science Department
Mirror specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>symbol</th>
<th>value</th>
<th>unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cylindrical mirror</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius R_1</td>
<td>R_1</td>
<td>0.2106</td>
<td>m</td>
</tr>
<tr>
<td>focal length f_1</td>
<td>f_1</td>
<td>7.800</td>
<td>m</td>
</tr>
<tr>
<td>Incident angle $\xi/2$</td>
<td>$\xi/2$</td>
<td>13.50</td>
<td>mrad</td>
</tr>
<tr>
<td>Planar mirror</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incident angle $\gamma/2$</td>
<td>$\gamma/2$</td>
<td>8.14 – 75.4</td>
<td>mrad</td>
</tr>
<tr>
<td>Spherical Mirror</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius R_3</td>
<td>R_3</td>
<td>63.780</td>
<td>m</td>
</tr>
<tr>
<td>focal length f_3</td>
<td>f_3</td>
<td>0.30215</td>
<td>m</td>
</tr>
<tr>
<td>Incident angle $\eta/2$</td>
<td>$\eta/2$</td>
<td>9.475</td>
<td>mrad</td>
</tr>
<tr>
<td>Offset-1</td>
<td>H</td>
<td>0.1200</td>
<td>m</td>
</tr>
<tr>
<td>Offset-2</td>
<td>H'</td>
<td>0.1145</td>
<td>m</td>
</tr>
<tr>
<td>Offset-3</td>
<td>II</td>
<td>5.518</td>
<td>mm</td>
</tr>
</tbody>
</table>
Optics Specs

Performance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>symbol</th>
<th>value</th>
<th>unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy range</td>
<td>ε</td>
<td>200 – 2000</td>
<td>eV</td>
</tr>
<tr>
<td>Pulse length (rms)</td>
<td>τ</td>
<td>34 – 12</td>
<td>fs</td>
</tr>
<tr>
<td>Pulse energy</td>
<td>E</td>
<td>1.2 - 40</td>
<td>μJ</td>
</tr>
<tr>
<td>Peak Power</td>
<td>P_{input}</td>
<td>10 - 1000</td>
<td>MW</td>
</tr>
<tr>
<td>E-beam size (rms)</td>
<td>s</td>
<td>50 -15</td>
<td>μm</td>
</tr>
<tr>
<td>Resolving power</td>
<td>R</td>
<td>> 23000</td>
<td></td>
</tr>
<tr>
<td>Throughput</td>
<td>η_{total}</td>
<td>0.2 – 0.005</td>
<td>%</td>
</tr>
<tr>
<td>Output peak Power</td>
<td>P_{output}</td>
<td>26 - 49</td>
<td>kW</td>
</tr>
<tr>
<td>Time delay</td>
<td>ΔT</td>
<td>10.837 – 9.595</td>
<td>ps</td>
</tr>
</tbody>
</table>
Ray-Tracing Calculations

- **Input parameters**
 - **Source**
 - **Spatial**
 - Gaussian
 - **Angular**
 - Gaussian
 - **Grating parameters**
 - **Object/image distances**
 - \(L_{\text{object}} = 18.000 \, \text{m}, \, L_{\text{image}} = 6.000 \, \text{m} \)
 - **Input/exit angles**
 - \(\alpha = \beta = 2\theta/2 = 88.2175^\circ \)
 - **Polynomial (variable-line-spacing)**
 - Groove density = 22222.22 l/cm
 - Linear coefficient = 76.89 l/cm²
 - Mount = TGM/Seya
 - Auto-tuning
 - Signed

- Best focus
 \[g_1 = 76.89 \]

- Fixed linear coeff.
 \[g_1 = 76.59 \]

- \[g_1 = 76.39 \]

- \[g_1 = 77.39 \]
End-to-end Results

- Source to re-entrant point simulation without exit slit

at source
\((E, E+\Delta E, E-\Delta E)\)

at re-entrant point after M3
(no slit)

at grating after M1

at exit slit location after grating
(no slit)
End-to-end Results

- Source to re-entrant point simulation with exit slit

At source:
\[(E, E+\Delta E, E-\Delta E)\]

At re-entrant point after M3:

At grating after M1:

At exit slit after grating:
Summary

- **Design meets all requirements**
 - **High-resolution Grating Monochromator**
 - Fixed-focus operation excellent choice
 - Only single grating needed
 - Capable of tuning entire energy range
 - Defocusing effects understood
 - Few moving parts
 - Efficiency sufficient for seeding
 - Estimate and rigorous calculation indicate enough output power after mono
 - Delay is variable
 - but only weakly energy dependent

- **Mirrors**
 - Pre-mirror
 - Enables fixed-focus operation
 - Vertical collimation mirror
 - Re-collimates mono beam at entrance point
 - Has a short focal length, defocus effect is evident, but could be compensated
 - Horizontal focusing mirror
 - Focuses input beam at entrance point
Focusing requirements

- Image angular size < grating angular dispersion
 \[
 \frac{w_0'}{r'} \leq |\Delta \beta|
 \]
 - $r' \approx 6\, \text{m}$
 - Image angular size < 1.14 μrad
 - $w_0' < 6.84\, \mu\text{m}$

Possible solutions

- Focusing pre-mirror
- Spherical grating (fixed line spacing)
- Plane variable line spacing (VLS) grating
- Spherical +VLS grating
Angular Dispersion

Angular dispersion

\[\Delta \beta = -\frac{\lambda}{R} \frac{1}{\sigma \cos \beta} \]

- At required resolving power \(R \)
- Much smaller than diffraction
 - Never be separated unless focused

\[
\begin{align*}
\lambda + \Delta \lambda &\quad \lambda \\
\alpha &\quad \beta \\
\Delta \beta &\quad \beta \\
\lambda &\quad \lambda
\end{align*}
\]

\[
\begin{align*}
\sqrt{2} w_0 &\quad w_0 \\
b &\quad w(z) \\
\Theta &\quad \Theta \\
z &\quad z
\end{align*}
\]

Diffraction-limited divergence
Grating dispersion \(|\Delta \beta|\)
VLSG focusing

Grating Performance for Fixed Focus

Energy (eV) vs. \(|\Delta \beta|\)
Grating Monochromator

- **Grating materials**
 - Si single crystal substrate
 - Proven fabrication technology
 - Superb roughness specs
 - But coating may be needed

- **Sustaining FEL full power**
 - At normal incidence
 - 200 eV: 1.2 µJ
 - 2000 eV: 40 µJ*
 - Peak energy deposition (per atom)
 \[\varepsilon = \frac{2I_0}{\pi w_0^2(z) \alpha \frac{N_a \rho}{M}} \]
 - At \(z = 18 \) m
 - \(w_0(z = 18 \text{ m}) = 122 - 369 \) µm
 - Be is best, but coating unclear
 - \(\text{B}_4\text{C}, \text{C} \) coatings are safe but \(k \)-edge at \(\sim 283 \) eV
 - Si is also safe but \(k \)-edge at \(\sim 1824 \) eV

Note: increased from original spec by 10x
Grating Monochromator

- Use material void of absorption edges if possible
 - Be, Si are good for energy < 1800 eV
 - B₄C, C are good for energy > 300 eV
- Efficiency as high as possible
 - Must operate close to \(\theta_c \)
 - Critical angle \(\theta_c \)
 - Similar for almost all light material
 - Be, B₄C, C, and Si are fine
 - Almost linear in \(\lambda \)
Supporting Slides

- Alternative configurations
- ABCD formulations
 - Ray-optics
 - Gaussian beams
 - Arbitrary coherent beams
Alternative Configurations

Possible solutions

<table>
<thead>
<tr>
<th>Current configure</th>
<th>M₁</th>
<th>M₂</th>
<th>G</th>
<th>M₃</th>
<th>S</th>
<th>M₃</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cylindrical</td>
<td>Planar</td>
<td>Planar-VLS</td>
<td>Fixed</td>
<td>Spherical</td>
<td>(small translation)</td>
<td>VLS needed</td>
<td></td>
</tr>
<tr>
<td>(sagittal plane)</td>
<td></td>
<td></td>
<td></td>
<td>(tangential plane)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Configure - II</td>
<td>Cylindrical</td>
<td>Planar</td>
<td>Planar</td>
<td>Spherical</td>
<td>Fixed</td>
<td>Spherical</td>
<td>Extra mirror needed</td>
</tr>
<tr>
<td>(sagittal plane)</td>
<td></td>
<td></td>
<td></td>
<td>(tangential plane)</td>
<td></td>
<td>(tangential plane)</td>
<td></td>
</tr>
<tr>
<td>Configure - III</td>
<td>Spherical</td>
<td>Planar</td>
<td>Planar</td>
<td>Spherical</td>
<td>Fixed</td>
<td>Toroidal</td>
<td>Footprint on grating too small</td>
</tr>
<tr>
<td>(tangential plane)</td>
<td></td>
<td></td>
<td></td>
<td>(tangential & sagittal planes)</td>
<td></td>
<td>(tangential & sagittal planes)</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram showing the configurations with mirrors M₁, M₂, G, and M₃]
Example: design @ 2 keV

- **Optical pulse parameters**
 - $E = 2000$ eV
 - $\lambda = 6.200$ Å
 - $t = 2.068$ as
 - $\Delta T_{\text{FWHM}} = 41.57$ fs
 - $R = 22689$ to make it fully transform-limited

- **Transverse beam size**
 - Assuming predominantly TEM$_{00}$ mode
 - $\Delta x_{\text{FWHM}} = \Delta y_{\text{FWHM}} = 35.3$ µm
 - Beam waists $w_{0x} = w_{0y} = 30.0$ µm
 - Rayleigh length
 - $z_{Rx} = z_{Rx} = \frac{\pi w_{0x}^2}{\lambda} = 4.552$ m, if fully coherent
 - Diffraction-limited
 - $z_{Rx} < \frac{\pi w_{0x}^2}{\lambda} = 4.552$ m, if partially coherent
 - Not diffraction-limited
Variable Line Spacing Grating

- Fixed focal point operation
 \[
 \cos \beta = \frac{1}{\cos \alpha \kappa}
 \]

- Linear coefficient
 \[
 \frac{\Delta \sigma}{\Delta x} = -\sigma \frac{r' + r}{\sin \alpha - \sin \beta}
 \]
 \[
 = -\sigma \frac{\sin^2 \theta \left(\frac{1}{r} + \frac{1}{\kappa^2 r'} \right)}{\left(\sqrt{1 - \sin^2 \theta} - \sqrt{1 - \frac{1}{\kappa^2 \sin^2 \theta}} \right)}
 \]
 \[
 \approx -\sigma \frac{2 \left(\frac{1}{r} + \frac{1}{\kappa^2 r'} \right)}{\frac{1}{\kappa^2} - 1} \quad \text{if } \theta \ll 1
 \]
Variable Line Spacing Grating

If $\Delta \sigma / \Delta x = \text{constant at } \lambda_{\text{opt}}$

- Effective focus location

$$\frac{\lambda}{\sigma^2} \left[\frac{\Delta \sigma}{\Delta x} \right]_{\lambda = \lambda_{\text{opt}}} = -\cos^2 \alpha - \cos^2 \beta$$

$$r'(\lambda) = \frac{\cos^2 \beta}{\cos^2 \alpha - \frac{\lambda}{r} \left[\frac{\Delta \sigma}{\Delta x} \right]_{\lambda = \lambda_{\text{opt}}}}$$

- Effects of defocus
 - Larger image size at exit slit
 - Curved wavefront at exit slit

Grating Performance for Fixed Focus

- Larger image size at exit slit
- Curved wavefront at exit slit

Object w_0 to λ to image w_0'

Energy (eV)

- 200 to 2000

Defocus (m)

- -0.025 to 0.035
Operation of Pre-mirror

- Function of pre-mirror
 - Fixed focal point operation
 - Exit angle (β) variable
 - Rotation of grating
 - Incident (α) & included (2θ) variable
 - Motion of pre-mirror
 - Rotation and effective translation

![Graph showing grating performance for fixed focus](image)

- Included angle
- Incident angle
- Exit angle

Energy (eV) vs. α, β, 2θ (rad)

M_1, M_2, M_3
Operation of Pre-mirror

- Motion of pre-mirror
 - Rotation
 \[\gamma' = \frac{1}{2}(\pi - 2\theta - \eta - \xi) \]
 - Translation
 - Variable
 ➔ Single rotation about a pivot point

![Graph showing the performance of a grating for fixed focus](image)
Rotation of Pre-mirror

- Rotation of pre-mirror
 - Center of rotation
 - ½ distance Π above grating
 - Paraxial approximation

$$\lim_{\gamma' \to 0} \gamma' \cong \Gamma'$$

![Diagram showing pre-mirror rotation with center of rotation, half distance above grating, and paraxial approximation](image-url)
Effective Source Location

- Variation in source location
 - Optical path length difference
 - Extremely small (~ 0.40 mm)
 - Real concern
 - Jitter in FEL saturation point (~ 1 m)

![Grating Performance for Fixed Focus](chart)

Virtual source point

Photon Division

X-ray Science Department
Image at Exit Slit

- **Image formation**
 - Waist location shift about slit
 - Flat wavefront at waist
 - Curved wavefront at slit
 - Impact on collimation calculation

![Diagram of image formation with labels for waist, slit, and their respective locations](image)

![Graph showing Grating Performance for Fixed Focus with energy on the x-axis and s(µm) on the y-axis](graph)

- **Photon Division**
 - X-ray Science Department
Re-Collimation after exit slit

ABCD matrix

\[A = \frac{\cos \beta}{\cos \alpha} = 1 \]

\[
\begin{bmatrix}
A_{\text{total}} & B_{\text{total}} \\
C_{\text{total}} & D_{\text{total}}
\end{bmatrix} = \begin{bmatrix}
1 & r & 1 & 0 & 1 & r' \\
0 & 1 & C & 1 & 0 & 1
\end{bmatrix}
\]

\[= \begin{bmatrix}
1 + Cr' & r + Crr' + r' \\
C & 1 + Cr
\end{bmatrix}
\]

\[= \begin{bmatrix}
M & 0 \\
-1/f_t & 1/M
\end{bmatrix}
\]

\[M = -\frac{r'}{r} \]

\[f_t = \frac{R \cos(\xi/2)}{2} \]
Coherent Beam Propagation

- ABCD matrix for Gaussian beam w/ const. ζ

\[
\delta r' - i z_R' = \left[\frac{M(\delta r - i z_R) + 0}{-(\delta r - i z_R)/f_t + 1/M} \right]_{\delta r = 0}
\]

\[
\delta r'(\lambda) = -M f_t z_R^2 \frac{f_t^2 + z_R^2}{(f_t/M)^2 + z_R^2}
\]

\[
z_R' = f_t^2 z_R \frac{z_R'}{z_R} = f_t \sqrt{\frac{z_R'}{z_R}} = \frac{f_t}{\sqrt{(f_t/M)^2 + z_R^2}}
\]

\[
M_{Gaussian}(\lambda) = \sqrt{\frac{z_R'}{z_R}} = \frac{f_t}{\sqrt{(f_t/M)^2 + z_R^2}}
\]

Grating Performance for Fixed Focus

- Designed Location of waist (ray-optics location)
- Designed location of re-entrant point
- Actual location of waist

Energy (eV) vs. Degree (m)

- w_0 to w_0'
- z_R to z_R'
- r to r'
- $\delta r'(\lambda)$
- $r'_{non-coherent}$

Photon Division
X-ray Science Department

SLAC
NATIONAL ACCELERATOR LABORATORY
Increase Input power?

6-Å FEL power along the **first undulator**

Saturation around 32 m with power ~10 GW

Present LCLS-II plan uses 40 meter long undulators
Coherent Beam Propagation

- ABCD matrix for Gaussian beam w/ const. ζ

$$\delta r' - i z_R' = \left[\frac{M(\delta r - i z_R) + 0}{-(\delta r - i z_R)/f_l + 1/M} \right]_{\delta r = 0}$$

$$\delta r'(\lambda) = -\frac{M f_l z_R^2}{(f_l/M)^2 + z_R^2}$$

$$z_R' = \frac{f_l^2 z_R}{(f_l/M)^2 + z_R^2}$$

$$M_{\text{Gaussian}}(\lambda) = \sqrt{\frac{z_R'}{z_R}} = \frac{f_l}{\sqrt{(f_l/M)^2 + z_R^2}}$$

Grating Performance for Fixed Focus

- Designed Location of waist
- Designed location of reentrant point
- Actual location of waist

Object w_0 to image w_0' with reentrant point z_R' and non-coherent $r'_{\text{non-coherent}}$.