A Design Study of a 100-MHz Thermionic RF Gun for the ANL XFEL-O Injector

A. Nassiri
Advanced Photon Source
For
ANL XFEL-O Injector Study Group

M. Borland (ASD), B. Brajuskovic (AES), D. Capatina (AES), A. Cours
X. Dong (ASD), K-J Kim (ASD), S. Kondrashev (PHY), S. Kondrashev (PHY)
R. Kustom (ASD), R. Lindberg (ASD), P. Ostroumov (PHY), N. Sereno (ASD)
P. Piot (Northern Illinois University), E. Trakhtenberg (AES), G. Trento (ASD),
G. Waldschmidt (ASD)
Outline

- Electron gun requirements
- Why a thermionic Low frequency rf gun?
- ANL 100-MHz rf gun design
- Preliminary multipacting simulation result
- Future R&D plans
Gun Requirements

- Meeting the XFEL-O performance goals:
 - High repetition rate
 - Bunch repetition rate ~1 MHz
 - Bunch charge
 - 40 pC
 - Bunch length
 - < 1 ps
 - Average beam current
 - 40 µA
 - Normalized transverse emittance (rms)
 - < 0.2 mm-mrad
 - Beam kinetic energy @gun exist
 - 1 MeV (300 ps rms)

- More on XFEL-O injector beam dynamics
 - N. Sereno, WG5: Thursday morning
Why a thermionic LF Gun?

- For a given mean transverse kinetic energy, a thermionic cathode produces a much lower beam emittance by mainly reducing the cathode size

\[\epsilon_{n,rms} = \frac{\gamma r_c}{2} \sqrt{\frac{E_{\perp,kin}}{m_0 c^2}} \]

- Ultra-low emittance is possible due to small charge per bunch
 - 40 pC (80 mA, 0.5 nsec bunches)

- Lower frequency allows for a larger cavity
 - Significant reduction of the power density in the structure
 - Makes it possible to operate in CW mode
 - A lower frequency gun implies smaller accelerating gradient, is not a disadvantage
 - RF power level is reasonable for 1 MV operation. Accelerating voltage is higher than DC gun.

- Low-frequency, normal-conducting RF guns with low wall power density are well suited for high rep. rates (CW) operation
 - Proven and mature technology
 - Alternative to DC/SRF guns
Staples, Sannibale, and colleagues have designed and developed an optimized 187 MHz rf gun at 750 kV with beam pulse rate to 1 MHz.

- Re-entrant geometry
 - Optimized for high shunt impedance (~ 6.5 MΩ)
- Both Cs₂Te and GaAs cathodes are being considered
 - Requires operational vacuum pressure in the low 10⁻¹¹ Torr range
 - Incorporates NEG pump modules

1 K. Baptiste, *et al.*, Proc. PAC09
Designs were investigated for capacitively loaded structures to reduce overall dimension of cavity.

Design eventually morphed into a folded coax with short circuited endplate.

Optimizing this design resulted in a geometry similar to LBNL with the addition of a reentrant gap.
ANL 100MHz CW RF Gun

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>100 MHz</td>
</tr>
<tr>
<td>Q_U</td>
<td>44,991</td>
</tr>
<tr>
<td>V_{gap}</td>
<td>1.0 MV</td>
</tr>
<tr>
<td>Energy</td>
<td>6.06 J</td>
</tr>
<tr>
<td>R_s</td>
<td>11.81 Mohm</td>
</tr>
<tr>
<td>$E_{cathode}$</td>
<td>25.6 MV/m</td>
</tr>
<tr>
<td>Peak E_{surf}</td>
<td>33.8 MV/m</td>
</tr>
<tr>
<td>P_{loss}</td>
<td>85 kW</td>
</tr>
<tr>
<td>Peak $P_{density}$</td>
<td>12 W/cm²</td>
</tr>
<tr>
<td>Radius</td>
<td>0.68 m</td>
</tr>
<tr>
<td>Length</td>
<td>0.73 m</td>
</tr>
</tbody>
</table>

Dimensions:

- Height: 680 mm
- Length: 730 mm
- Diameter: 40 mm
- Channel: 60 mm
- Reentrant width increases
 - Shunt impedance improves
 - Frequency increases
 - Results in larger cavity with lower wall losses

- Cathode surface increases
 - Shunt impedance reduces
 - Frequency decreases
 - More uniform gradient, less transverse kick
 - Results in smaller cavity with larger wall loses

![Diagram of cavity design]
- Peak surface losses ~12 W/cm² which requires only standard cooling.
- Cooling channels on cavity must also accommodate thermal load due to electron back bombardment.
- Wall losses are scaled to 90kW.
- Cavity wall thickness is ½ inch with a thermal film coefficient assumed to be 0.5 W/cm².
- Stresses and displacements are due to rf loading with 90kW wall losses.
- Cavity is assumed to be fixed along the beampipe. A more realistic cavity support system has not yet been modeled.
- The stress levels and displacements are reasonable and may be addressed with mechanical supports, if necessary.
- 1 atmosphere external pressure applied to cavity walls with ½” wall thickness.
- APS design uses a contoured shape to increase cavity rigidity and reduce cavity displacement.
- Vacuum optimized design is useful to maximize vacuum pumping area but is more susceptible to deformation.

Peak stress: 64 MPa
Peak displacement: 4.0 mm
Peak stress: 98 MPa
Peak displacement: 7.3 mm
Displacement and stresses due to external pressure may be addressed by using mechanical supports.

Mechanical supports for vacuum optimized shape are shown to reduce deflection by a factor of 70 using mechanical supports.

Displacements and stresses due to 1 atm external pressure

Deflection reduced from 7.3mm to 0.1mm

Stresses reduced to easily manageable levels
- LBNL design was evaluated by J. Staples for multipacting probability around 0.75 MV gap voltage using 2-d Fishpact code.
- SLAC code suite Omega3P and Track3P was used at ANL to model EM field and multipacting of LBNL VHF gun.
- TRACK3P produced similar results over analysis range from 200 kV to 1.2 MV gap voltage.
- Multipacting was predicted to exist along the corners at the outer radius of the cavity at various voltages.

*J. Staples, “Multipactors Calculations for the VHF Photoinjector Cavity Using Fishpact”, CBP Technical Note 377
- Omega3P and Track3P were used to evaluate multipacting from 0.3MV to 1.2MV.
- Multipacting was not predicted to be present within a large operating band around 1.0MV gap voltage.
- Increased rounding of the corners on the outer radius of the cavity was designed to reduce multipacting susceptibility and increase mechanical rigidity.

Scalar plot of electric field from Omega3P

Multipacting-free region shows a wide band around operating voltage

Impact energies > 50eV and < 5keV are susceptible to multipacting in copper

1.0 MV XFEL-O gap voltage
ANL XFEL-O DC Gun

- 300kV APS DC gun based on 500kV Spring-8 design.
- APS gun will be used to test cathode materials at low currents.
- Gun length ~0.8m and will be submerged in oil. Ceramic radius ~135mm
Future work

- Number of stages: 150
- Peak voltage: 300 kV
- Gun beam current: 200 mA
- Gun capacitance charging current: 200 Amps
- Pulse rise time: < 500 ns
- Flat top: 2 μs
- Voltage droop: 0.3%
- Fall time: 2 μs
- Repetition rate: 1 Hz
- Gun discharging method: Solid-state crowbar

N. Sereno, WG5 – Thursday morning

A. Nassiri 100-MHz Thermionic RF Gun for ANL XFEL-O Injector

FLS2010 – WG5
SLAC, March 2nd, 2010
Acknowledgement

We would like to thank John Corlett, Fernando Sannibale, John Staples, and Russell Wells for providing us the RF design parameters and the CAD model of LBNL VHF RF gun.