High Repetition Rate
Inverse Compton Scattering Source

W.S. Graves, F.X. Kaertner, D.E. Moncton
March 2, 2010
Future Light Sources Workshop
SLAC
1) **Overview** of the technology

2) Present **state of the technology** R&D and existing technology gaps

3) Likely **performance limitations** in terms of limiting brightness, limiting average power, and temporal properties (pulse duration, rep rate, coherence, spectral purity)

4) Nominal strawman design of a 500-eV source within a **5 year horizon**

5) Nominal strawman design of a 50-keV source within a **10 year horizon**

Linac technology. R. Ruth will cover ring-based ICS technology in next talk.
X-ray Science

Challenge: Probe of all spatial and temporal scales and resolutions relevant to condensed matter

Spatial Scales

Nature
- Flea
- Human hair ~30 μm wide
- Red blood cells & white cell ~5 μm
- Virus ~200 nm
- DNA helix ~3 nm width
- Water molecule
- Atom

Technology
- Head of a pin ~1 mm
- Micro gears 10-100 μm diameter
- DVD track
- 1 μm Electrodes connected with nanotubes
- Carbon nanotube ~2 nm diameter
- Atomic corral ~14 nm diameter

Temporal Scales

Nature
- Hydrogen transfer time in molecules is ~1 ns
- Spin precesses in 1 Tesla field is 10 ps
- Shock wave propagates by 1 atom in ~100 fs
- Water dissociates in ~10 fs
- Bohr period of valence electron is ~1 fs

Technology
- Computing time per bit is ~1 ns
- Optical network switching time per bit is ~100 ps
- Magnetic recording time per bit is ~2 ns
- Laser pulsed current switch ~1 ps
- Shortest laser pulse is ~1 fs
- Oscillation period of visible light is ~1 fs
ICS X-ray Science

CV-CT with 1µm resolution

Ultrafast x-ray diffraction

Correlated electrons

Protein Crystallography

Image-guided tumor radiation therapy

W.S. Graves Future Light Sources Workshop 2010, Stanford, CA
ICS Beam Brilliance

3rd gen SR

ERL ICS
SRF ICS
Rigaku rotating anode

4th Generation: VUV & X-ray Lasers

Best "lab" source today
Who Wants a Compact Source?

Academic
Harvard, Purdue, Boston U., Niels Bohr Institute, London Center for Nanotechnology, Institute of Biophysics and Nanosystems – Austrian Academy of Sciences

Medical
Massachusetts General Hospital

National Labs
ORNL, National High Magnetic Field Lab, NIST

Industrial
Novartis, Wyeth, GE, Rigaku Americas Corp, Siemens

Cultural
Louvre Museum
Technology Challenges

1) Low emittance, high current CW gun
2) CW linac
3) Cryogenic systems
4) High power laser
Approaches to Milliamp Electron Gun*

<table>
<thead>
<tr>
<th>Technology</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Risk</th>
</tr>
</thead>
</table>
| **Superconducting RF at 4K**
(NPS, Niowave, UW-Madison, MIT) | Reduced cryo cost
Very high design gradient
Modest RF power | Not yet demonstrated
Moderate cryo cost/complexity
No b-field at cathode
Immature technology | High |
| **Superconducting RF at 2K**
(FZD, DESY, BNL, Jlab) | Cavity designs mature
High design gradient
Modest RF power
Demo’d performance | Design performance not yet reached
Expensive & complex cryo
No b-field at cathode | Moderate to High |
| **Room temp RF**
(LBNL) | Moderate design gradient
B-field at cathode OK
No cryo cost | Not yet demonstrated
Moderate gradient and exit energy
Higher RF power | Moderate |
| **DC**
(Jlab, Cornell, Daresbury) | Mature design
Proven performance
No RF effects on beam | Modest gradient and exit energy
Ion back-bombardment
Mature - further improvement difficult | Low |

Laser plasma accelerator becoming viable at low average current
Approaches to CW Linac

<table>
<thead>
<tr>
<th>Technology</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superconducting RF at 2K</td>
<td>Cavity designs mature</td>
<td>Expensive, large, & complex cryo</td>
<td>Moderate to low</td>
</tr>
<tr>
<td>(DESY, Jlab, Cornell, ACCEL, many others)</td>
<td>High pulsed gradient</td>
<td>High CW gradient not yet demo’d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Demonstrated performance</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Small RF structures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superconducting RF at 4K</td>
<td>Reduced cryo cost and size</td>
<td>Larger RF structures</td>
<td>High to moderate</td>
</tr>
<tr>
<td>(JLab, ODU, ANL, LANL, MIT)</td>
<td>Moderate gradient</td>
<td>Immature technology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modest RF cost</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Room temperature CW RF not feasible due to RF wall losses but OK at low rep rate.
Laser plasma accelerator becoming viable at low rep rate.
• 176 MHz RF frequency
• 10 – 20 MV/m cathode gradient
• 0.5 – 1 MeV exit beam energy
• Compatible with b-field at photocathode

Now funded by BES Accelerator and Detector R&D program

Courtesy of J. Corlett (LBNL)
Existing SRF Technology at 2K

1300 MHz SRF gun at FZ Dresden currently in operation.
Design cathode gradient is 25 MV/m. So far demonstrated 7 MV/m.

1300 MHz SRF gun with cold Pb cathode
J. Sekutowicz et al.
Demonstrated 46 MV/m cathode field.

SRF linac module at Daresbury. Uses 2 TESLA-type 1-m cavities.

Courtesy of J. Teichert (FZD)
Cryogenic Equipment

For a compact facility, the cryogenic system is the biggest and most expensive set of equipment.

Want 4K (or higher) temperature.

Gun and linac become larger.

Cost/size optimization quite different from major facility.
Next Generation SRF Injector at 4K

- 200 – 500 MHz RF frequency
- 45 MV/m cathode gradient at 105 mT peak B-field on wall
- 4 MeV exit energy
- 1 mA average current

4K operation to reduce cost and size of cryogenic system.

Under development at Naval Postgraduate School, Niowave Inc, and UW-Madison.
Next Generation CW SRF Linac at 4K

Spoke Resonators

+ Good mechanical rigidity
+ Lower RF-frequency for a given size (4K operation instead of 2K)
+ Compactness
+ Good Higher Order Mode (HOM) Control

− Moderate gradient (10-12 MV/m)
High Power Laser Challenges

- High power lasers, kW-class, pico and femtoseconds
- High-power enhancement cavities with MW stored power

See detailed talks on Thursday afternoon by T.Y. Fan (Lincoln Lab) and F.X. Kaertner (MIT)
Cryo-cooled Yb-doped Lasers

- Cryo-cooling allows efficient use of gain media (example Yb:YAG)
 - Yb:YAG has low quantum defect (~ 9%) and broad bandwidth (~1.5 nm)
 - 4-level laser at 100 K, saturation fluence of 2 J/cm² (3 level at 300 K, 9 J/cm²)
 - Spectral bandwidth of 1.5 nm: suitable for picosecond pulse amplification
- Improved thermo-optic properties at low temperature for power scaling
- Modest LN₂ usage – 1-kW laser needs ~0.1 liters/min
500-W-level CW Cryogenic Yb:YAG Oscillator

- Cryogenic Yb:YAG has enabled efficient, simple lasers with good beam quality
- 494-W cw power unpolarized
 - 71% optical-optical efficiency
 - M² ~ 1.4 at 455 W
- Performance limited by pump power
 Fan et al., JSTQE 13, 448 (2007)
Developments in Cryogenic Yb-doped Lasers

- Multi-kW average power in 15-ns pulses at 5-kHz PRF (Cryogenic Yb:YAG Development, formerly ATILL)
- ~10-ps pulses at 2-kHz pulse repetition frequency (PRF) with 100-W average power (DARPA HRS)
- 100 W in 10-ps pulses at 100-kHz PRF for photoinjectors (DOE STTR with Q-Peak)
- Multi-100-W, 1-ps pulses at 5-kHz PRF (Army)
- Power scaling of fs (<250 fs) pulsed lasers (HEL JTO)
- Tech transfer to multiple organizations
High-Power Enhancement Cavity

- Requirements: electron-beam access, high-intensity in interaction region, and low loss
- 1-MW intracavity power, 10 mJ, ~1-ps pulses circulating
- Cavity Finesse > 3000

Confocal cavity for high-intensity Bessel-Gauss beams – Cavity shown enables 1000 TW/cm²
ICS Parameter Optimization

• Electron emittance effects
• Laser and electron pulse length
• Laser and electron spot size
Electron Emittance Effects

Normalized emittance = 0.3 µm

Normalized emittance = 1.0 µm

Plane Perpendicular to Laser Polarization
Electron Beam Parameters

- \(\varepsilon_n = 0.30 \text{ mm-mrad (25 MeV)} \)
- Rms spot size = 2.9 \(\mu \text{m} \)
- \(Q = 0.1 \text{ nC} \)

Laser Parameters

- \(\lambda = 1 \mu \text{m} \)
- \(W = 10 \text{ mJ} \)
- Pulse duration = 0.5 ps

X-ray Flux vs Spot Size and Length

![Graphs showing x-ray dose and average brightness/rep. rate vs rms laser spot size for different pulse durations.]
Intensity Profile of 12 keV X-rays with 0.1% bw

\[\frac{\text{Intensity (keV/mrad}^2\text{)}}{\theta_y (\text{mrad})} \]

\[\sim 10^{12} \text{ photons/sec @ 100 MHz in 0.1% BW for linac} \]

\[\sim 2 \times 10^{14} \text{ photons/sec @ 500 MHz in 0.1% BW for ERL} \]
X-ray Source Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Linac @ 1mA 5 year horizon</th>
<th>ERL @ 50 mA 10 year horizon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunable monochromatic photon energy [keV]</td>
<td>3 – 12</td>
<td>3 – 12</td>
</tr>
<tr>
<td>Pulse length [ps]</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>Flux per shot [photons]</td>
<td>1×10^6</td>
<td>5×10^7</td>
</tr>
<tr>
<td>Repetition rate [Hz]</td>
<td>10^8</td>
<td>5×10^8</td>
</tr>
<tr>
<td>Average flux [photons/sec]</td>
<td>1×10^{14}</td>
<td>2×10^{16}</td>
</tr>
<tr>
<td>FWHM bandwidth [%]</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>On-axis bandwidth [%]</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Source RMS divergence [mrad]</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Source RMS size [mm]</td>
<td>0.002</td>
<td>0.003</td>
</tr>
<tr>
<td>Peak brightness [photons/(sec mm2 mrad2 0.1%bw)]</td>
<td>2×10^{19}</td>
<td>4×10^{20}</td>
</tr>
<tr>
<td>Average brightness [photons/(sec mm2 mrad2)]</td>
<td>6×10^{14}</td>
<td>1×10^{17}</td>
</tr>
</tbody>
</table>
Electron & Laser Parameters

<table>
<thead>
<tr>
<th></th>
<th>Linac</th>
<th>ERL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Current [mA]</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Bunch charge [pC]</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>Repetition rate [Hz]</td>
<td>10^8</td>
<td>5×10^8</td>
</tr>
<tr>
<td>Energy [MeV]</td>
<td>10 - 50</td>
<td>10 - 50</td>
</tr>
<tr>
<td>Normalized emittance [mm-mrad]</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>FWHM bunch length [ps]</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>RMS energy spread [keV]</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Laser power [kW]</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Cavity frequency [MHz]</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>Cavity Q</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Stored cavity power [MW]</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Laser FWHM pulse length [ps]</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Development Plans

5 Years

1 mA linac
100 MHz repetition rate
1 kW laser
1 MW laser coherent cavity

10 Years

50 mA ERL
500 MHz repetition rate
5 kW laser
5 MW laser coherent cavity
Coherent enhancement cavity with Q=1000 giving 5 MW cavity power

5 kW cryo-cooled Yb:YAG drive laser

Superconducting RF photoinjector

X-ray beamline 2

Inverse Compton scattering

X-ray beamline 3

X-ray beamline 4

Superconducting RF Linac

10 kW beam dump

Electron beam of 50 mA average current at 10-30 MeV

ERL-ICS Facility within 10 years
Summary

• Compact ICS x-ray sources provide scientific opportunities not otherwise available at universities, national labs, hospitals, and industry.

• Second only to 10 GeV FEL as source of ultrashort hard x-rays

• Performance depends on development of CW RF and laser technology: many efforts underway.

• Performance goals require short pulses and low emittance

• Equipment cost ~$10M for linac-based ICS