Status of MTCA Infrastructure

June 4-5, 2012
Chengcheng Xu for infrastructure team:
Sonya Hoobler, Kukhee Kim, Till Straumann, Ernest Williams, Jingchen Zhou
Outline

• Infrastructure Hardware Evaluation
 – MTCA Carrier Hub
 – CPU Module
 – EVR
 – mTCA Shelf
 – Power Module

• Infrastructure Software
 – Operating System
 – Network/Computing Infrastructure
 – MTCA System Manager
 – Timing System Integration

• Infrastructure Task Progress and Future Plans
Overall System

- MCH
- CPU
- EVR
- Cooling Module
- Power Module
Dimension Definition

<table>
<thead>
<tr>
<th></th>
<th>Compact-Size (3HP)</th>
<th>Mid-Size (4HP)</th>
<th>Full-Size (6HP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single modules</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>73.8x13.88x181.5mm</td>
<td>73.8x18.96x181.5mm</td>
<td>73.8x28.95x181.5mm</td>
</tr>
<tr>
<td>Double modules</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>148.8x13.88x181.5mm</td>
<td>148.8x18.96x181.5mm</td>
<td>148.8x28.95x181.5mm</td>
</tr>
</tbody>
</table>
MTCA Carrier Hub Evaluation

• Vadatech UTC002
 – Currently manages the 6 and 12 slot shelves at SLAC
 – Strict MTCA specification implementation
 • Had compatibility issues, but it is now resolved
 – Front panel serial port, Ethernet ports
 – PCIe switching capability
 – Very powerful hardware, will keep exploring the features it offers
Vadatech UTC002
CPU Module Evaluation

- Currently using: ADLINK AMC1000
- Used in all MTCA system, and works well.
- Intel Core2 Duo 1GHz processor
- Front panel serial port
- No front panel Ethernet port is inconvenient
- VGA port, not needed for SLAC environment
- 2/5 hardware failures
- We are also evaluating other CPUs
CPU Module Evaluation

- Have ordered Kontron AM4020M
- Intel i7 processor 2.6GHz
- Dual Ethernet ports on the front panel
- Front panel serial port
- Also ordered Vadatech CPU AMC720, delayed due to silicon vendor delay
ADLINK AMC1000
Kontron AM4020M
EVR Evaluation

• MRF PMC based EVR with Vadatech AMC100 PMC Carrier
• Currently used in all of our MTCA systems
MTCA Shelf Evaluation

• 6 slot shelf vendors
 – Schroff
 – ELMA

• 12 slot shelf vendors
 – Schroff
 – ELMA
 – Performance Technology (Coming soon)
 – Vadatech (Later this year)
Six Slot MTCA Shelf Evaluation

- Available from Schroff and ELMA
- Designed for development; it is easy to use and helpful for development
- Not designed for field use
 - Lack of redundancy
 - Power module is not compatible with MTCA.0 spec
 - Cooling module is not modular
- Working with vendors to upgrade to MTCA.0 compatible for field use
ELMA 6 Slot Shelf
12 Slot MTCA Shelf Evaluation

Schroff
- Slots for redundant
 - Power module
 - Cooling module
 - MCH
- Marginal cooling design
 - Gen. 1 cooling module was non-intelligent
 - Gen. 2 less air flow at power module area
- Problems are resolved by vendor

ELMA (Gen.1)
- Slots for redundant
 - Power module
 - Cooling module
- Initial cooling test is satisfactory
- Had power management control issue
MTCA Shelf Future Work

• Evaluating new ELMA 12 slot shelf (arriving soon)
• New Schroff 5 fan cooling module, will evaluate when it comes out
• Vadatech 12 slot shelf MTCA.4 under development, will evaluate when it comes out
μBlade AC Power Module Evaluation

• μBlade PUMA 600W in Schroff 12 slot shelf
 – Over heats with Gen.1 cooling module
 – Stable in lab environment with Gen.2 cooling module
• μBlade PUMA 600W in ELMA 12 slot shelf
 – Stable with ELMA 12 slot in lab environment
• DESY reports too much RF noise
• Company filed for bankruptcy
• New sources are under development (Ray’s talk)
μBlade PUMA 600W Power Module
Power Module

- Power modules for 6 slot shelf (non-standard)

Schroff power module

ELMA power module
Infrastructure Software

- Operating System
- EPICS (R3.14.12)
- Network/Computing Infrastructure
- MTCA System Manager
- Timing System Integration
LinuxRT OS

• Assemble only what is needed for the system
 – Linux kernel 3.2.13 (RT_PREEMPT patch is available)
 – μClibc: “small” footprint C-library
 – Busybox: provides most standard unix commands
 – iPXE: provide diskless boot (netboot)

• Real-time bench mark
 – Max. interrupt delay time: \(~44 \mu s\)
 – Avg. interrupt delay time: \(~7.5 \mu s\)

• Able to handle 360Hz (2.7ms cycle time)
• Currently used in LI28-2 LLRF station
• Developed by T. Straumann
Network/Computing Infrastructure

• Develop and test network configuration:
 – DHCP
 – ntp
 – iPXE
 – TFTP
 – NFS
 – iocConsole

• Develop by ICD Software, and SLAC Computer Center
MTCA System Manager

• Uses IPMI protocol over RMCP

• Manager has ability to:
 – Monitor/control shelf power supply
 – Monitor/control shelf cooling module
 – Monitor shelf and module temperature
 – Monitor module online/offline status

• Development in progress (S. Hoobler)
MTCA System Manager Future Work

- Next version could include features like:
 - Faulty module automatic isolation
 - Module hotswap/power cycle
Timing System Integration

• Currently using PMC carrier with EVR, using B Hill’s Linux driver with modification done by K. Kim
• Current system is working but not ideal for the future
• Needs to distribute full 14 trigger/timing across backplane
• Develop EPICS driver/device support for AMC timing module
Infrastructure Hardware Future Plans

- PMC EVR trigger fan out board: initial dev phase (J. Dusatko/C. Xu)
- FPGA code for the AMC timing module: initial dev phase (J. Dusatko)
- New hardware integration compatibility tests (C. Xu)
<table>
<thead>
<tr>
<th>Section</th>
<th>Duration (days)</th>
<th>% Complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Infrastructure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document</td>
<td>5</td>
<td>100%</td>
</tr>
<tr>
<td>Review</td>
<td>1</td>
<td>100%</td>
</tr>
<tr>
<td>Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document</td>
<td>15</td>
<td>20%</td>
</tr>
<tr>
<td>Review</td>
<td>5</td>
<td>0%</td>
</tr>
<tr>
<td>Implementation / Prototype</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LinuxRT Development</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTOS, toolchain, environment</td>
<td>10</td>
<td>100%</td>
</tr>
<tr>
<td>Diskless boot loader</td>
<td>3</td>
<td>100%</td>
</tr>
<tr>
<td>Document</td>
<td>5</td>
<td>10%</td>
</tr>
<tr>
<td>EPICS Base Integration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Build/release EPICS base, drivers, modules (R3.14.12)</td>
<td>5</td>
<td>100%</td>
</tr>
<tr>
<td>Startup script</td>
<td>2</td>
<td>100%</td>
</tr>
<tr>
<td>Documentation</td>
<td>3</td>
<td>20%</td>
</tr>
<tr>
<td>EPICS Drivers/Device Support</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support OSI for LinuxRT</td>
<td>5</td>
<td>100%</td>
</tr>
<tr>
<td>EVR (PMC Carrier) development</td>
<td>5</td>
<td>100%</td>
</tr>
<tr>
<td>EVR (AMC) development</td>
<td>5</td>
<td>0%</td>
</tr>
<tr>
<td>IPMI development (PS, Fan, Temp, on/off)</td>
<td>20</td>
<td>40%</td>
</tr>
<tr>
<td>Network and Computing Infrastructure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network configuration and services for DHCP/PXE/TFPT</td>
<td>4</td>
<td>100%</td>
</tr>
<tr>
<td>iocConsole (serial port) modification</td>
<td>2</td>
<td>20%</td>
</tr>
<tr>
<td>Hardware Infrastructure</td>
<td>Duration (days)</td>
<td>% Complete</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------</td>
<td>------------</td>
</tr>
<tr>
<td>PMC Carrier Trigger Fanout Board (inhouse)</td>
<td>10</td>
<td>0%</td>
</tr>
<tr>
<td>EVR (AMC) port Firmware from SLAC to Stockholm U.</td>
<td>40</td>
<td>0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test and Integration</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Roll out computing infrastructure to production</td>
<td>1</td>
<td>80%</td>
</tr>
<tr>
<td>Migrate LLRF 28-2 station IOC SW and demo</td>
<td>3</td>
<td>100%</td>
</tr>
<tr>
<td>IPMI</td>
<td>5</td>
<td>0%</td>
</tr>
<tr>
<td>EVR (AMC)</td>
<td>5</td>
<td>0%</td>
</tr>
<tr>
<td>PMC Carrier Trigger Fanout Board</td>
<td>5</td>
<td>0%</td>
</tr>
</tbody>
</table>
Conclusion

• MTCA.4 is a new specification and required extra work with vendors to achieve interoperability.
• We have succeeded to make a working general purpose infrastructure
• More effort is in progress to make our infrastructure into a fully featured and robust system
Thank You!