Longitudinal Shaping of Relativistic Electron Bunches with Applications to the Plasma Wakefield Accelerator

R. Joel England

UCLA Department of Physics and Astronomy
Particle Beam Physics Laboratory
Los Angeles, CA USA

Talk for Stanford Linear Accelerator Laboratory
December 6, 2007
Introduction: The RF Photoinjector

- Acceleration from rest to relativistic energies (~1 to 10 MeV)
- Temporal structure of electron beam reflects that of laser pulse on the cathode.
- Capable of producing low-emittance beams.
- Emittance: figure of merit; measure of area occupied by beam distribution in transverse phase space.

\[\varepsilon_{x,N} = \frac{1}{mc} \sqrt{\langle p_x^2 x^2 \rangle - \langle p_x x \rangle^2} \approx \sqrt{\varepsilon_{x,th}^2 + \varepsilon_{x,rf}^2 + \varepsilon_{x,sc}^2} \]

thermal emittance: \(\varepsilon_{x,th} \propto \sigma_x \)

RF emittance: \(\varepsilon_{x,rf} \propto \sigma_x^2 \sigma_z^2 \)

space charge emittance: \(\varepsilon_{x,sc} \propto \frac{1}{\sigma_z} \)

- Trade-off between rf and sc components
- Implies optimal pulse length \(\sigma_z \)
- Generally determined by photoinjector codes (e.g. PARMELA, HOMDYN)
- Typical \(\sigma_z \sim 10 \) degrees of RF phase
- For S-Band (2.856 GHz) 10 deg \(\sim 10 \) ps
Beam Brightness

\[B_\perp = \frac{I}{\varepsilon_{x,N}^2} \quad I \propto \frac{Q}{\sigma_z} \]

\[Q_{\text{max}} \approx \frac{2}{5} \pi \sigma_x^2 \varepsilon_0 E_0 \]

- “brightness”: measure of density of particles in transverse phase space.
- Emittance constrained by photoinjector: \(\varepsilon_N > 1 \mu m \)
- \(\sigma_z \) constrained (\(\sim 10 \) deg of RF phase) to minimize \(\varepsilon_N \)
- \(Q \) constrained by cathode image charge limit

Optimal photoinjector brightness

- To obtain higher brightness beams, require compression techniques

\[B_{\perp,\text{opt}} = 16(2\pi)^{9/2} \alpha k \frac{I_A[1 + \frac{3}{5} A]^2}{\sigma_z A^2} \]

\(\alpha=1.5; \lambda=10\text{cm}; A=1; I_A=16\text{kA}; \sigma_z=3\text{mm} \)

\[B_{\perp,\text{opt}} = 80 \text{ } \text{A}/\mu\text{m}^2 \]
Bunch Compression Techniques

RF Techniques

Phase Space Rotation

Ballistic Compression

Magnetic Techniques

Chicane

Other Nonisochronous Devices (e.g. dogleg compressor)
Applications for High Brightness Beams

Free electron laser

- high gain regime
- minimize the gain length L_g

$$L_g = \frac{\lambda_u}{2\sqrt{3}\pi \rho} \quad \rho \propto \omega_p^{2/3} \propto n_e^{1/3}$$

Inverse Compton Scattering

- beam + laser (hv) \rightarrow higher hv' photons
- shortness of scattered pulse limited by shortest of beam, laser

$$N_{ph} = \mathcal{L} \sigma_T \quad \mathcal{L} \propto \frac{N_e}{A_{int}}$$

Plasma Wakefield Accelerator:

- beam + plasma \rightarrow high-gradient wakes
- beam density, time profile important

$$E_{\text{max}} = E_0 1.3 \Lambda \ln(1 / \sqrt{\Lambda / 10}) \quad n_{\text{beam}} \gg n_0$$

$$\Lambda = (n_{\text{beam}} / n_0) k_p^2 \sigma_r^2$$
Optimal Drive Beam Profile for Blowout Regime of PWFA

- PWFA: plasma wakefield accelerator
- electron beam-driven plasma waves
- acc. fields on order of multi-GeV/m
- acceleration of drive tail or witness bunch

Transformer Ratio:

\[E_+ = acc.\ field; E_- = decc.\ field \]

\[R = \frac{E_+}{E_-} = k_p L_z \]

\[R > 2 \quad \text{if} \quad L_z > 2k_p \]
Focus of this Talk

- Generation of electron beam with ramped current profile
- Temporal diagnostic with sub-ps resolution
 - transverse deflecting mode cavity
- Experimental verification of ramping mechanism
How Does a Dogleg Compress the Beam?

Chicane

- Higher-energy particles travel a shorter path

\[R_{56} = \frac{\partial z}{\partial \delta} > 0 \]
“Positive longitudinal dispersion”

Dogleg

- Higher-energy particles travel a longer path

\[R_{56} = \frac{\partial z}{\partial \delta} < 0 \]
“Negative longitudinal dispersion”
Ramped Beam Mechanism

Artificial mathematical manipulation of a chirped particle distribution

\[
R_{56} = \frac{\partial z}{\partial \delta} < 0
\]

non linear transformation: \(z_f = z_0 + R_{56} \delta + T_{566} \delta^2 \)

\(T_{566} \) arises from chromatic focusing errors in horizontally focusing quads and then grows in the subsequent drift sections (2nd order x-z correlation).
Solution: sextupole corrector magnets near the horizontally focusing quads.
Neptune Dogleg Compressor
S-Bahn Compressor

- Is a “dogleg” or dispersionless translating section.
- Half-chicane with focusing elements between the bends.
- Can be operated in a nondispersive mode with symmetric beta function and 2π betatron advance.
- Like a chicane, may be used as a bunch-length compressor.
- Nominal first order temporal dispersion ($R_{56} = -5$cm) is suitable for beam-shaping.
- Sextupoles required to compensate 2nd order longitudinal dispersion.
Neptune Dogleg Compressor
PARMELA Simulation Results: 1000 particles, 300pC

- 2D PIC Simulation
- 5 GeV/m gradients
- 6 nC drive beam w/ n₀=2e16 cm⁻³
The UCLA Neptune Laboratory

Beam Charge: 100pC --> 500pC
Beam energy: up to 15 MeV
Emittance: \(\varepsilon_N = 4 \text{ mm mrad} \)
Power Source: 18 MW Klystron
RF Frequency: 2.856 GHz
Cathode laser: 60 \(\mu \text{J at } \lambda = 266 \text{ nm} \)
Laser pulse length: 5-7 ps RMS
Simulations predict “ramped” beam occurs near point of maximum compression ($\kappa=1094 \text{ m}^{-3}$).

Empirical analysis assumes a gaussian profile, which is not necessarily the case here.

Theoretical curve obtained from PARMELA + ELEGANT simulation, with autocorrelation algorithm.

- Martin-Puplett CTR Interferometer
- Bunch length measurement by autocorrelation.
- Sub-picosecond resolution obtainable.

PARMELA gun and linac 5000 macroparticles

ELEGANT prefocus and s-bahn 60% collimation

MATHEMATICA
1. interferogram reconstruction
2. triple-gaussian fit procedure
CTR Measurements of Compression

- Martin-Puplett CTR Interferometer
- Bunch length measurement by autocorrelation.
- Sub-picosecond resolution obtainable.

\[\sigma_f(\text{ps}) = 0 \text{ m}^{-3} \]
\[\sigma_f(\text{ps}) = 1094 \text{ m}^{-3} \]
\[\sigma_f(\text{ps}) = 1641 \text{ m}^{-3} \]
\[\sigma_f(\text{ps}) = 2735 \text{ m}^{-3} \]
A Better Temporal Diagnostic
Deflecting Mode Cavity

Lowest dipole mode is TM_{110}
Zero electric field on-axis (in pillbox approx.)
Deflection is purely magnetic
Polarization selection requires asymmetry

\[
x' = \frac{\pi f_{RF} L_B \sqrt{2 P_{RF} R_\perp}}{c E/e}
\]

\[
x_B = \frac{\pi f_{RF} L_B \sqrt{2 P_{RF} R_\perp}}{c E/e}
\]

Pillbox Fields

\[
E_z = E_0 J_1(\kappa r)e^{i\phi};
\]

\[
B_r = B_0 \frac{J_1(\kappa r)}{\kappa r} e^{i\phi};
\]

\[
B_\phi = iB_0 J'_1(\kappa r)e^{i\phi};
\]

on axis
\(\kappa r = 0\)

\[
E_z = 0;
\]

\[
B_x = \frac{B_0}{2};
\]

\[
B_y = i\frac{B_0}{2};
\]

Courtesy of D. Alesini
J.D. Fuerst, et. al., DESY Report CDR98, 1998
Deflecting Mode Cavity
Power and Resolution

\[\sigma_{x,f} = \sqrt{\sigma_0^2 + \sigma_{\text{def}}^2} \]
\[\sigma_{\text{def}} = 2\sigma_z L \frac{\pi V_{\perp} f}{cU/e} \]

\[V_{\perp} \gg V_{\text{min}} = \frac{\sigma_{x,0} U/e}{L\pi \sigma_t f} \]
\[\sigma_{t,\text{min}} = \frac{\sigma_{x,0} U/e}{L\pi V_{\perp} f} \]

\[V_{\perp,\text{design}} = 3V_{\text{min}} = 545 \text{kV} \quad \sigma_{t,\text{min}} = 545 \text{fs} \]

\(\Delta t = \frac{\sigma_0 U/e}{L\pi f R_{\perp}^{1/2} \sqrt{nP_{\text{in}}}} \)

\(\begin{align*}
\sigma_{x,f} &= \text{beam size at screen with deflector on;} \\
\sigma_0 &= 0.3 \text{mm} = \text{beam size at screen with deflector off;} \\
L &= 43 \text{cm} = \text{drift from deflector to screen;} \\
f &= 9.6 \text{GHz} = \text{RF frequency;} \\
V_{\perp} &= \text{deflecting voltage;} \\
R_{\perp} &= 820 \text{k}\Omega = \text{transverse shunt impedance per cell;} \\
P_{\text{in}} &= \text{input RF power;} \\
U &= 12 \text{MeV} = \text{electron beam energy;} \\
\varphi_0 &= \text{deflector injection phase} = 0; \\
\sigma_{t,\text{min}} &= \text{minimum resolvable rms bunch length;} \\
\Delta x &= 30 \mu\text{m} = \text{spatial resolution of screen \& optics;} \\
\Delta t &= \text{effective temporal resolution of deflector;} \\
\end{align*} \)

9 cells; 50 kW; 400 fs resolution
Overview of Design Process

2004

- Cold test prototype
 - Aluminum 9-cell
 - 9.3 GHz
 - Cold-test only
 - Clamped
 - No polarization separation

2005

- Steel prototype
 - Steel with Cu coating 9-cell
 - 9.5 GHz
 - Cold-test only
 - Cflange design
 - No polarization separation

2006

- Final design
 - GlidCop Al-15 9-cell
 - 9.59616 GHz
 - Tested up to 50kW peak pwr
 - Cconfalt flange design
 - EDM’ed polarization holes
Deflecting Cavity Animations

H-field complex magnitude

H-field vector plot
Deflecting Cavity: Polarization Separation

- **Rods** give larger mode separation but shift the desired mode too much.
- **Holes** give less mode separation but don’t perturb the desired mode.
- In final design, holes used with radius reduced to 1 mm, giving a mode separation of 1 MHz.

Hole/rod radius = 2 mm

- Undesired +1358 MHz
- Desired +53 MHz
- Undesired -7 MHz
- Desired -2 MHz
Final Cavity Design

- 9-cell standing wave structure
- center-fed input RF
- reconditioned VA-24G klystron
- no brazing between cells
- cells are stacked CF vacuum flanges

x-band klystron (50 kW peak)

CAD drawing of stacked cells

one cell with polarization holes
S-Band/X-Band frequencies are multiples of modelocker freq of drive laser

Ensures phase stability of gun, linac, laser, and deflector
Bead Pull Results

- Bead pull using aluminum bead
- Data proportional to $|E|^2$ and $|H|^2$
- Field flatness $\sim \pm 5\%$
- Data taken at room temp (24°C)

After brazing input coupler

Field flatness $\sim 10\%$

\[f_0 = 9.60084 \text{ GHz} \ ; \Delta f = 1.5 \text{ MHz} \]
\[\beta = 0.870 \ ; \text{VSWR} = 1.15 \]
\[Q_L = 6359 \ ; Q_0 = 11889 \ ; Q_e = 13672 \]
Temperature Tuning

Frequency vs. Temperature

- using heater tape and thermocouple
- PID temperature feedback control
- dots are measured data
- solid lines are linear fits
- $\frac{df}{dT} = -179$ kHz/°C

Reflectance vs. Temperature

- dots are measured data
- solid lines are interpolations
- at optimal freq in vacuum (9.59616 GHz), cavity is slightly overcoupled (-35 dB @ 62 C)
- therefore operating $\beta = 1.036$ in vacuum
High Power RF Measurements

- oscilloscope traces for several attenuation settings
- measured on deflecting cavity waveguide power coupler
- maximum forward power level is 50 kW
Experimental Setup

- pop-in faraday cup / 1” YAG
- YAG = ytrium aluminum garnet
Deflection vs. RF Phase

- Solid curve = sine function fit
- Amplitude = $eV_0L/p_0c = 5.5 \text{ mm}$

$$y_{cen} = \frac{eV_0L}{p_0c} \sin(\phi_0)$$

<table>
<thead>
<tr>
<th>Method</th>
<th>Forward Power (kW)</th>
<th>V_0 (kV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase Scan</td>
<td>9.6 kW</td>
<td>232</td>
</tr>
<tr>
<td>RF (50 Ω termination)</td>
<td>12.75</td>
<td>267</td>
</tr>
<tr>
<td>RF (1 MΩ termination)</td>
<td>12.15</td>
<td>261</td>
</tr>
</tbody>
</table>

- Comparison with RF values
- Calibrated crystal detector
- Assumption: shunt impedance = 5.6 MΩ (sim. value)
Deflecting Cavity: Uncompressed Beam

- beam is on-crest in linac (no chirp)
- therefore not compressed in dogleg
- beam appears asymmetrical
- somewhat long pulse
- a lot of structure in the tail
- in some streaks, it is more pronounced
- structure related to nonlinear xtals (?)

\[\sigma_t = 5.9 \text{ ps} \]

IR drive laser autocorrelation

\[\text{FWHM} = 28.8 \text{ ps} \quad \text{(IR)} \]

Doubling xtals
(factor of 2)

\[\text{FWHM} = 14.4 \text{ ps} \quad \text{(UV)} \]

\[\sigma_{\text{rms}} \sim 7 \text{ ps} \]
Deflecting Cavity: Compressed Beam

- chirped 20° in linac, 234 pC of charge at 11.8 MeV with $V_0 = 400$ kV
- residual horizontal dispersion produces pseudo-phase space reconstruction
- combination of linear and nonlinear effects (R_{16} & T_{166})
- ramping mechanism clearly visible
- due to asymmetry of initial pulse, overcompensation with sextupoles needed

ELEGANT Simulation

“streak” in x, y, z phase space current profile

sextupoles: 0 m3
sextupoles: 602 m3
sextupoles: 903 m3
sextupoles: 1204 m3
Gaussian beam

sextupoles: 1094 m3
sextupoles: 1641 m3
sextupoles: 2188 m3
Asymmetric (front-heavy) beam
ELEGANT Simulation

“streak” in x,y z phase space current profile

Gaussian beam

sextupoles: 0 m⁻³

sextupoles: 602 m⁻³

sextupoles: 903 m⁻³

sextupoles: 1204 m⁻³

Asymmetric (front-heavy) beam

sextupoles: 0 m⁻³

sextupoles: 1094 m⁻³

sextupoles: 1641 m⁻³

sextupoles: 2188 m⁻³
observed compression when running off-energy by 0.76%
however, for negative chirp, dogleg should expand, not compress

\[z_f = z_0 + R_{56} \delta + T_{566} \delta^2 \]

-0.4 cm -10 m (!)

-0.4 cm -10 m (!)

\[\hat{R}_{56} = R_{56} + 2T_{566} \Delta \]

\[z_f = z_0 + \hat{R}_{56} \hat{\delta} + \hat{T}_{566} \hat{\delta}^2 \]

sextupoles used to remove \(T_{566} \)

Further Applications: Doglegs
SLAC - ORION Low-E Hall Dogleg

- studies for PWFA / general transport
- large energy spread requires octupole correction

initial beam | no sextupoles | with sextupoles | sext’s + oct’s

Further Applications: Deflecting Cavity
Dynamically Optimized Beam Profiles

Beam Charge: 0 to 50 pC
Beam energy: up to 4 MeV
Power Source: 18 MW Klystron
RF Frequency: 2.856 GHz (S-Band)
Cathode laser: 10 µJ at $\lambda = 266$ nm
Laser pulse length: 50 fs RMS

Future Experiments
Witness Beam Generation

For PWFA application, drive beam needs a witness beam to accelerate.

Region of high dispersion in x
Strong correlation b/w x and z
Insert mask in x to sever beam in z

No mask inserted
Undercorrected with sextupoles to elongate profile

With 1cm mask inserted at above location
Future Experiments
PMQ Focusing

- Hybrid Permanent Magnet and Iron
- Grey cubes are Alnico; M=1.175 T
- Field gradient:
 \[B' = 110 \text{ T/m}; B'' = -0.002 \text{ T/m}^2 \]
- Bore diameter: 8 mm
- Benefits: cheaper, better field profile
- Downsides: small bore; in-vacuum
ELEGANT Simulation Result

\[\gamma = 25.7; \quad E = 13.13 \text{ MeV}; \quad Q = 300 \text{ pC} \]

\[\sigma_x = 130 \mu \text{m}; \quad \varepsilon_x = 41 \text{ mm mrad} \]

\[\sigma_y = 57 \mu \text{m}; \quad \varepsilon_y = 15 \text{ mm mrad} \]

\[\sigma_z = 0.51 \text{ mm}; \quad \sigma_\delta = 1.84\% \]

\[B \approx \frac{2Q}{\varepsilon_{N,x}} \frac{\varepsilon_{N,y}}{\sigma_x} = 412 \text{ mA} / \mu \text{m}^2 \]
Conclusions

• Proposal:
 - ramped beams: improved transformer ratio ($R > 2$) for PWFA applications
 - feasible using dogleg compression with sextupoles
 - deflecting cavity diagnostic (500 fs resolution)

• Deflecting cavity
 - final cavity design finalized in 3-phase process w/ 2 prototypes
 - cavity testing indicates that it operates within the design specifications
 - high power RF testing: no breakdown problems observed

• Experimental tests:
 - unchirped (uncompressed) beam has asymmetric structure
 - chirped beam w/residual dispersion = semi-tomographic reconstruction
 - evidence for ramp-shaped electron beams

• Other Experiments:
 - deflector use for measuring optimized charge distributions
 - dogleg high-brightness focus studies
 - witness bunch generation
Acknowledgements

<table>
<thead>
<tr>
<th>Laser-Plasma Group</th>
<th>UCLA Particle Beam Physics Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chan Joshi</td>
<td>James Rosenzweig</td>
</tr>
<tr>
<td>Sergei Tochitsky</td>
<td>Brendan O’Shea</td>
</tr>
<tr>
<td>Jay Sung</td>
<td>Joris Fourrier</td>
</tr>
<tr>
<td>Chris Clayton</td>
<td>Claudio Pellegrini</td>
</tr>
<tr>
<td></td>
<td>Pietro Musumeci</td>
</tr>
<tr>
<td></td>
<td>Oliver Williams</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UCLA Physics Staff</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Christine Green</td>
<td>Matt Thomson</td>
</tr>
<tr>
<td>Harry Lockart</td>
<td>Scott Anderson</td>
</tr>
<tr>
<td>Jim Kolonko</td>
<td>Rodney Yoder</td>
</tr>
<tr>
<td>Teresa Wheeler</td>
<td>Pedro Frigola</td>
</tr>
<tr>
<td>Penny Lucky</td>
<td>Gerard Andonian</td>
</tr>
<tr>
<td></td>
<td>Alan Cook</td>
</tr>
<tr>
<td></td>
<td>Mike Dunning</td>
</tr>
<tr>
<td></td>
<td>.... and many more</td>
</tr>
</tbody>
</table>