Title: Summary of E214 at FACET, May 2014: Monochromatic 10 MeV Gammas by a Miniature Undulator

Author(s): Di Rosa, Michael David
Kim, Yong Ho
Evans, Scott C.
Garraud, Alexandra
Peterson, Brock
Hogan, Mark
Clarke, Christine

Intended for: SLAC Accelerator Research Experimental Program Committee Meeting, Experiment Reivew, 2014-09-15 (Menlo Park, California, United States)

Issued: 2014-09-11 (Draft)
Summary of E214 at FACET, May 2014

Monochromatic 10 MeV Gammas by a Miniature Undulator

Experimental Team

LANL Michael Di Rosa, Yongho Kim, Scott Evans
Univ. of Florida Alexandra Garraud (Prof. David Arnold)
Univ. of Pennsylvania Brock Peterson (Prof. Mark Allen)
FACET Mark Hogan, Christine Clarke et al.
Anticipated Performance of Mini-Undulator in 20-GeV/3-nC FACET beam

Fabricated, Assembled and Measured Mini Undulator (λ_u = 400 μm)

Laser-machined SmCo undulator array

Assembly (End View)

<table>
<thead>
<tr>
<th>Gap</th>
<th>Peak Undulator Field</th>
<th>10 MeV γ’s / bunch</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 μm</td>
<td>0.25 T</td>
<td>2×10^6</td>
</tr>
<tr>
<td>400 μm</td>
<td>0.063 T</td>
<td>5×10^5</td>
</tr>
</tbody>
</table>
Installed Undulators

- Undulator 1 = 200 micron gap, 2nd generation
- Undulator 2 = 200 micron gap, 1st generation
- Undulator 3 = 400 micron gap
- Dummy = 400 micron gap, no magnet

Dummy (during assembly)
General Layout

Mini-Undulator in IP Area

(Dielectric Wakefield Chamber)

Instruments/Experiments on Beam-Dump Optical Table

dipole deflects e-beam 10 cm from gammas at optical table

approx. 6 ft × 3 ft
Crowded optical table and beam-dump area
But enough room for detectors and instruments
and shielding

Mach-Zehnder interferometer encased neatly in lead beneath the beamline
Favorable Prospects for gamma-Detection by GCD

<table>
<thead>
<tr>
<th>Date</th>
<th>HlgS (Duke)</th>
<th>FITAS (Idaho)</th>
<th>Omega</th>
<th>FACET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>2010 April</td>
<td>2012 July</td>
<td>1999-present</td>
<td>2014 May</td>
</tr>
<tr>
<td>Spectrum</td>
<td>$\Delta E/E = 5%$</td>
<td>Exponential</td>
<td>Near mono</td>
<td>$\Delta E/E = 3%$</td>
</tr>
<tr>
<td>Peak energy</td>
<td>10, 4, 17</td>
<td>End point of 20 MeV</td>
<td>16.75, 4.44</td>
<td>10</td>
</tr>
<tr>
<td>MeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flux at source</td>
<td>$1E+7 \gamma/s$</td>
<td>?</td>
<td>$> 2E+6 \gamma/shot$</td>
<td>$\sim 1E+7 \gamma/s$</td>
</tr>
<tr>
<td>frequency</td>
<td>5.6 MHz</td>
<td>10 Hz</td>
<td>Single shot</td>
<td>10 Hz</td>
</tr>
<tr>
<td>Incident</td>
<td>1 – 2 γ/pulse</td>
<td>5E+8 γ/pulse (> 6 MeV)</td>
<td>$> 2E+4 \gamma/shot$</td>
<td>$\sim 1E+6 \gamma$/pulse</td>
</tr>
<tr>
<td>gamma- flux per pulse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse width</td>
<td>$< 0.1 \text{ ns }$</td>
<td>60 ns</td>
<td>0.1 ns</td>
<td>$< 1 \text{ ps}$</td>
</tr>
<tr>
<td>Detection</td>
<td>- electrometer ($\sim 250 \text{ pA}$) - Single count</td>
<td>- DPO 400 mV - Fast frame</td>
<td>- SCD - MZ</td>
<td>MZ with DPO fast-frame mode</td>
</tr>
</tbody>
</table>
Diagnose overall system performance by remaining tools

<table>
<thead>
<tr>
<th></th>
<th>HlgS (Duke)</th>
<th>FITAS (Idaho)</th>
<th>Omega</th>
<th>FACET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>2010 April</td>
<td>2012 July</td>
<td>1999-present</td>
<td>2014 May</td>
</tr>
<tr>
<td>Spectrum</td>
<td>$\Delta E/E = 5%$</td>
<td>Exponential</td>
<td>Near mono</td>
<td></td>
</tr>
<tr>
<td>Peak energy MeV</td>
<td>10, 4, 17</td>
<td>End point of 20 MeV</td>
<td>16.75, 4.44</td>
<td></td>
</tr>
<tr>
<td>Flux at source</td>
<td>$1E+7 \gamma/s$</td>
<td>?</td>
<td>$> 2E+6 \gamma/shot$</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>5.6 MHz</td>
<td>10 Hz</td>
<td>Single shot</td>
<td>Quarantined at SLAC</td>
</tr>
<tr>
<td>Incident gamma-flux per pulse</td>
<td>$1 – 2 \gamma/pulse$</td>
<td>$5E+8 \gamma/pulse (> 6 MeV)$</td>
<td>$> 2E+4 \gamma/shot$</td>
<td></td>
</tr>
<tr>
<td>Pulse width</td>
<td>$< 0.1 \text{ ns ?}$</td>
<td>60 ns</td>
<td>0.1 ns</td>
<td></td>
</tr>
<tr>
<td>Detection</td>
<td>- electrometer ($\sim 250 \text{ pA}$) - Single count</td>
<td>- DPO 400 mV - Fast frame</td>
<td>- SCD - MZ</td>
<td></td>
</tr>
</tbody>
</table>
Compton-Diode Signal from “Dummy” Indicates Brem for even an Optimized and Centered e-Beam

Green Line = nothing inserted

Dummy at +100 μm

Dummy at +50 μm

Dummy (400 μm gap) aligned to beam center

(e-beam minor-diameter ~45–70 μm)
Also Indicates that Brem will Dominate Total Flux

Signal (Δ) in dummy case is $\sim 500X$ more than expected from gammas.
No Discernible Detection of γ’s by VCD (not unexpectedly)

![Graph showing VCD Signal over Time](image-url)
Lanex Images: “Blank” Case

Brem spot apparent with no device (undulator or dummy) inserted
Lanex Images: Dummy, 400-μm Gap

Centerline Counts Increase ~2X with Dummy Inserted and Centered
Lanex Images: 400-μm Undulator

Spot-size and signal with centered 400-μm undulator much like dummy case.
Lanex Images: 400-μm Undulator, 100 μm Offset

~5X signal increase from Brem, consistent with VCD results
Conclusions / Future Plans

- Can’t quite thread the needle — Bremsstrahlung generated by the present combination of mini-undulator and e-beam overwhelms produced gammas.

- Spectral and spatial filtering (e.g., collimation) will help isolate gammas from background.

- Intensive modeling of Brem generation, collimation, spectral filtering (by W and plastic, e.g.), and detection must precede a second try.

- Compare the GCD against a Compton spectrometer, which detects gammas with spectral resolution and will likely be a future option.