High energy upgrade: LCLS-II-HE
new insight to structural dynamics at the atomic scale

- Ultrafast coherent X-rays
- ~1 Ångstrom (~12 keV)
- High repetition rate

- 4 GeV \Rightarrow 8 GeV (SCRF linac)
- +20 cryomodules

Greg Hays
Project Director
LCLS-II-HE Dedicated Workshops

2016 Scientific Opportunities for Ultrafast Hard X-rays at High Rep Rate: An Energy Upgrade of LCLS-II

2016 LCLS-II-HE Science Case (CD-0 Approval)

2017 LCLS-II-HE “First Experiments” Meeting: Chemistry & Materials Physics

2017 LCLS-II-HE “First Experiments” Meeting: AMO, Biology, and Quantum Materials

2018 Advanced X-ray Methods & Instrumentation for LCLS-II-HE Science

CD-1 approved by DOE in September 2018
Advanced X-ray Methods & Instrumentation for LCLS-II-HE Science

Workshop Charge

- Identify compelling (transformative) X-ray methods and instrumentation
- Demonstrate that proposed methods exploit (require) the unique capabilities of LCLS-II-HE
- Justify (and prioritize) methods by projected science impact
 - LCLS-II-HE “first experiments” are a starting point (see LCLS-II-HE science case)
 - New “first experiment” ideas are welcome
- Consider both:
 1. Ideas consistent with near-term constraints (e.g. instrumentation that will fit in existing LCLS facilities)
 2. Longer-term ideas with greatest potential science impact
- For both (1) and (2):
 - Define the experimental approach
 - Define the required instrumentation, and key LCLS-II-HE source parameters
 - Feasibility analysis (or plan for one)
Advanced X-ray Methods & Instrumentation for LCLS-II-HE Science

October 16-17, 2018
Plenary: B53 Panofsky Auditorium
Breakouts: Building 48 (Redwood)
SLAC National Accelerator Laboratory - Menlo Park, CA

The LCLS-II project now underway at SLAC represents a major advance in X-ray laser capabilities that will enable compelling new science opportunities as identified by the user community [1]. When it becomes operational in 2020, this next-generation facility will exploit advanced superconducting accelerator technology (CW-JSCF) and tunable undulators to provide ultrafast coherent X-rays in a uniformly-spaced train of pulses with programmable repetition rates of up to 1 MHz and tunable photon energies from 0.25 to 5 keV.

Looking to the future, the proposed energy upgrade of LCLS-II to 8 GeV (LCLS-II-HE) promises to open entirely new areas of science as further identified by the user community [2]. LCLS-II-HE will provide X-ray energies extending beyond 12 keV to 40 keV, 100 times more than LCLS-II (1 keV), with a peak flux of 10^20 photons per pulse.

Tues. Agenda Overview

8:30 AM
Plenary Session

10:50 AM
break – group photo (outside B53)

12:30 PM
lunch (Redwood B48)

1:30-6:00 PM
Science Breakout Sessions

6:30 PM
dinner (B53 SLACáfe)

after dinner speaker: J.B. Hastings

8:00 PM
optional discussion & preparation closeout slides for Wed.
Science Breakout Sessions

- All are encouraged to present ideas (template provided – see website)
- Breakout summaries at plenary closeout
- Scribes will take notes and collect presented materials (for internal use only)

Materials Physics:
- heterogeneity, nonequilibrium dynamics

- Diling Zhu
- Aaron Lindenberg
- Mariano Trigo

AMO Physics, Gas-phase Chemistry, Atto Science

- Mike Minitti
- Peter Walter
- Thomas Wolf

Quantum Materials:
- correlated/collective phenomena

- Hasan Yavas
- Jun Sik Lee
- Patrick Kirchmann

Condensed Phase Chemistry

- Roberto Alonso-Mori
- Amy Cordones
- Tim van Driel

Biological Function & Structural Dynamics

- Mark Hunter
- Cornelius Gati
- Sebastien Boutet
Wed. Agenda Overview

8:30-10:30 AM **Advanced Instrumentation & Methods**
parallel breakouts

10:20 AM **Science Breakout Sessions**
final discussion & prep for closeout

11:50 PM **lunch** (Redwood B48)

12:50 PM **Plenary Closeout** (Redwood B48)
summary presentations from science breakouts
1. Advanced spectroscopy methods to probe collective excitations, electronic structure, and dynamics (IXS, RIXS, XPCS, HERFD, PES etc.)

2. Advanced scattering methods to probe atomic structural dynamics (Coherent scattering/imaging, XPCS, Bragg CDI, PDF analysis, EXAFS etc.)

3. Advanced methods to map stochastic dynamics, capture “rare” events, characterize non-identical objects, and map potential energy landscapes

4. Nonlinear X-ray & X-ray Pump/Probe Methods (Stimulated X-ray Raman, FT-IXS, extreme states via X-ray pump etc.)
1. What are the most important methods (prioritized list) and essential requirements for each prioritized method that will have the greatest scientific impact
 • Requirements for the proposed methods/instrument/diagnostics
 • Key XFEL and/or beamline capabilities/parameters
 • Requirements should accommodate a reasonably broad range of science applications
 • Identify conflicts, or areas where needs for different science applications begin to diverge i.e. What is an appropriate balance between impact/optimization for one area of science, vs. impact across multiple areas of science?

2. What are the most compelling science applications for each method
 • Should be consistent with above requirements
 • Solicit ideas from the science breakouts
 • Each science breakout will be encouraged to identify at least one representative to attend each of the Advanced Methods breakouts

3. Feasibility, current state of knowledge, next steps
 • Assessment of the feasibility and current state of knowledge for the proposed method/instrument
 • Is this a straight-forward extension of current state of the art?
 • What are the critical open questions, and next steps, to advance the feasibility case
New Experimental Capabilities of LCLS-II-HE

- **Dynamics near the FT Limit**
 - Time-resolved spectroscopy & inelastic scattering
 - RIXS & IXS at high resolution (meV)
 - Excited-state molecular dynamics
 - Time-resolved (diffuse) X-ray scattering (FT-IXS) following impulsive excitation of collective modes

- **Fluctuations & Stochastic Dynamics**
 - Ground-state collective modes via inelastic scattering
 - Photon Correlation Spectroscopy (XPCS, fs and longer):
 - sequential (μs), two-pulse (fs), programmable time structure

- **Heterogeneity**
 - Heterogeneous ensembles at atomic resolution (10^8-10^10 snapshots/day)
 - Time-resolved Pair Distribution Function (PDF)
 - ~100x increase in average X-ray brightness beyond DLSRs at 20 keV
LCLS-II-HE Science Opportunities

Chemical dynamics:
Reaction dynamics, charge transfer, molecular photocatalysts, natural & artificial photosynthesis

Catalysis:
Homogeneous and heterogeneous catalysis, interfacial & geo/environmental chemistry

Materials Physics:
Heterogeneity, spontaneous fluctuations, nonequilibrium dynamics, extreme environments

Quantum Materials:
Emergent phenomena & collective excitations

Biological Function & Structural Dynamics
Dynamics in physiological environments