Thermodynamics for Cryogenics

with the emphasis here on large-scale helium cryogenics

Tom Peterson, SLAC

January 2017
Outline

• Definitions
• Perfect gas (Pv=RT)
• Equations of state
• Entropy
• Compression and expansion processes
• Liquid/vapor systems
Old science with modern applications

• Thermodynamics is the study of macroscopic energy transformations between heat and work
• Thermodynamics has its basis in attempts to understand combustion and steam power (much in the 19th century) but is still “state of the art” in terms of practical engineering issues for cryogenics

James Dewar (invented vacuum flask in 1892)
Focus of this lecture

- Thermodynamics is a large area of study, far too much to cover in this one-hour introduction.

- I will focus on the thermodynamics concepts which I have found most important in my experience designing cryogenic systems and cryostats.
The laws of thermodynamics

• First law – “The energy of the isolated system is conserved.” (Conservation of energy)

• Second law – “The entropy of the isolated system increases in all real processes and is conserved in reversible (theoretical) processes.”

• Third law – “The entropy of a pure substance in complete thermodynamic equilibrium becomes zero at a temperature of absolute zero.” (One can never reach absolute zero.)
Some thermodynamics definitions

• A “system” in thermodynamics is a specified region in which mass transfer and/or heat transfer is studied
 – A “boundary” separates the system from its “surroundings”
 – Proper definition of the system can be important in solving a problem (we’ll see that in some examples later)
More definitions

• An “isolated” system has no mass or energy crossing the boundary
• A “closed” system has no mass crossing the boundary
• An “open” system has mass crossing the boundary and may or may not have constant mass
• The thermodynamic “state” of the system is the condition at a moment in time as defined by the system properties
• In general, two properties define the state of a system consisting of a pure substance in equilibrium
Commonly used properties

- T – temperature
- P – pressure (force per unit area)
- v – specific volume (volume V per unit mass)
- U – internal energy of the closed system or
- u – internal energy per unit mass
- H – enthalpy = U + PV
- h – enthalpy per unit mass (specific enthalpy)
- S – entropy
- s – entropy per unit mass
Derived properties, \(C_v \), \(C_p \), \(k \)

- Some important thermodynamic properties are defined from others, such as the heat capacities, \(c_v \), and \(c_p \), and \(k \)

\[
c_v = \frac{U}{T_v} \quad \quad \quad c_p = \frac{H}{T_p} \quad \quad \quad k = \frac{c_p}{c_v}
\]

- Since typically two properties define the state of the pure fluid in thermodynamics, equations generally have two independent variables

- Derivatives then are partial derivatives with respect to one independent variable with the other held constant
Perfect gas approximation

• A perfect gas obeys the equation $Pv=RT$ where R is a constant called the gas constant.

• The internal energy of a perfect gas is a function of temperature alone, $u = c_v \, T$ where c_v is constant.

• Since $h = u + Pv$, so $h = u + RT$ for a perfect gas, enthalpy is also a function of temperature alone for a perfect gas, where c_p is constant. $h = c_p \, T$.

Pv/RT versus P for helium

![Graph showing Pv/RT versus Pressure (atm) for helium at 20 K and 300 K.](image)
Equations of State

• In many cases, $Pv = RT$ may be a good approximation
 – For example, far enough from the critical pressure and from the condensation temperature
 – Good to within 10% for helium down to 8 K

• Terms may be added to account for deviations from $Pv = RT$, such as

 \[\frac{Pv}{RT} = 1 + \frac{B}{v} + \frac{C}{v^2} + \frac{D}{v^3} + \ldots \]

• This is called the “virial equation”, and the coefficients B, C, etc. are called “virial coefficients”.

• Equations of state enable calculation of fluid properties based on measurements of some of the basic properties
Helium phase diagram
(Steven W. VanSciver, Helium Cryogenics, p. 54)

• Critical point is 5.2 K, 2.245 atm
• Lambda transition from helium I to helium II is 2.172 K
Point c is called the critical point and marks the termination of any distinction between liquid and gaseous phases. If liquid-vapor phases in equilibrium at the critical point c are maintained in equilibrium while the temperature and pressure are raised, the attainment of state c will be marked by the disappearance of the meniscus that identifies the presence of two phases. In the vicinity of state c, the properties of the liquid phase and the vapor phase approach each other in similarity; for example, the specific volumes of liquid and gas approach the same value. At state c, all properties of both phases become identical. Note that a single phase of a fluid when confined in a glass container could not be visually recognized to be a solid, liquid, or gas (unless a change in color occurs with change of phase).
Entropy

- Least intuitive of the common properties
- Definition of entropy is based on energy change in a perfect, loss-free (reversible) process

\[dS = \frac{dQ_{\text{rev}}}{T} \]

- Entropy is the property which is held constant in an adiabatic (no heat flow in or out) reversible process like the perfect closed piston compression and expansion
T-s diagram for helium
The TdS equations

• From the first law (energy conservation) for a closed system with reversible addition or removal of heat and mechanical work (pdV), we have:

\[dQ_{rev} = dU + PdV \]

• With \(dQ_{rev} = TdS \) we have the first TdS equation:

\[TdS = dU + PdV \]

• From \(H = U + PV \) \(dH = dU + PdV + VdP \)

• Which gives us the second TdS equation:

\[TdS = dH - VdP \]
Isothermal compression
Example application of TdS equation

• From the second TdS equation, \(TdS = dH - VdP \)
 with constant temperature (isothermal) compression of an ideal gas, \(dH = 0 \), so \(TdS = VdP \)

• For the ideal gas, \(PV = RT = \text{const} \)

• Substituting \(V = RT/P \) gives

\[
TdS = RT \frac{dP}{P} \quad \text{and integrating,}
\]

\[
T \ s = RT \times \ln \left(\frac{P_{\text{out}}}{P_{\text{in}}} \right)
\]
Isothermal compression

- Isothermal compression “squeezes” the entropy out of the helium by increasing pressure at constant temperature.
- Enthalpy h (function of T alone) remains constant.
- Yet energy (heat) is removed in isothermal compression.
- That energy is $Q = T \cdot s$ and is equal to the compressor work, which we saw is $T \cdot s = RT \times \ln\left(\frac{P_{\text{out}}}{P_{\text{in}}}\right)$.
Isothermal compression example

• The second stage screw compressor at Fermilab’s MTF compresses 200 grams/sec helium from about 2.6 bar to 15 bar

• For helium R = 2.078 J/gK, so the ideal work at 300 K would be

\[
2.078 \frac{J}{gK} \cdot \left(300 K \right) \ln \frac{15}{2.6} \cdot \frac{200 \text{ grams}}{\text{sec}} : = 220 kW
\]

• With typical power consumption of 800 HP = 600 kW, the isothermal efficiency is about 37%

January, 2017
USPAS
Thermodynamics for Cryogenics
Tom Peterson
A real helium compressor

- Oil-flooded screw compressors are now standard
- A typical pressure ratio is about 4:1, so two stages are used in a typical helium plant to get a 15:1 to 20:1 pressure ratio
Isentropic expansion

- Removes energy from the system at constant entropy by means of adiabatic (no heat transfer) reversible (loss-free) work
- Expansion at constant entropy from about 70,000 atm and room temperature to 1 atm would remove enthalpy (as work) to that of 2-phase helium
Isentropic efficiency

• Isentropic expansion efficiency is defined as

\[
\frac{h_{\text{real}}}{h_{\text{isentropic}}}
\]

• where \(\Delta h = h_{\text{in}} - h_{\text{out}} \)
• \(\Delta h_{\text{real}} \) will always be less than \(\Delta h_{\text{isentropic}} \) so efficiency will be less than 100%
• For real expanders, 65% to 85%
Ideal helium process

Work in = $T_{\text{amb}} \cdot s$

Work out = h

Heat out

Isothermal Compressor

Heat in = h

Isentropic Expander

Net ideal work in = $T_{\text{amb}} \cdot s - h$

(in dimension of energy per unit mass)
Isothermal heat absorption

• Net ideal work (energy per unit mass of working fluid) into the system is $T_{\text{amb}}\Delta s - \Delta h$

• For a refrigerator with the heat load absorbed by evaporation at constant liquid temperature, T_{liq}, $\Delta h = T_{\text{liq}} \Delta s$

• Thus, the ratio of applied work to heat absorbed is $(T_{\text{amb}} \Delta s - \Delta h)/\Delta h = T_{\text{amb}}/T_{\text{liq}} - 1$

• For low temperatures this is approximately the ratio of absolute temperatures, T_{amb}/T_1
Power required for a non-isothermal load

- Use

\[P = \dot{m} \left(T_{\text{amb}} \left(s_{\text{out}} - s_{\text{in}} \right) - \left(h_{\text{out}} - h_{\text{in}} \right) \right) \]

- Where P is the ideal room-temperature power required to remove a non-isothermal heat load

- I will show the use of this later in calculating cryogenic system power
Exergy

• In many cryogenics analyses, authors describe an “exergy” analysis
 – Exergy is defined as \(de = dh - T_0 ds \), which is the quantity described previously as the ideal refrigeration power
 – At each stage, one can compare the real power required with expected, from

\[
P = \dot{m} \left(T_{amb} (s_{out} - s_{in}) - (h_{out} - h_{in}) \right)
\]
Gibbs Free Energy

- In thermodynamics texts, you will find the quantity Gibbs Free Energy defined, which is $G = H - TS$
- For processes which start and end at the same temperature, one may compare the real process with an ideal cycle rejecting heat to that reference temperature, T_0. On a per unit mass basis, $dg = dh - T_0 ds$
- So exergy (the ideal work for refrigeration) is basically the same concept in reverse as Gibbs Free Energy, the maximum work that can be extracted from a process doing work
Example cryo power analysis

• See ILCcryoTDP-26June2012.xls
Cryogenic plant losses (compressor)
Cryogenic plant losses (cold box)
Expansion engines

- Reciprocating expansion engines are used in many small liquefiers and help to illustrate some fundamentals of thermodynamics.
- At the right is a Koch Process Systems (similar to “model 1400”) expander with cryostat open.
Expansion engine cylinder

- At the right is a close-up of the expander showing the cylinder, valve bodies, and some of the cryogenic piping.
Expansion engine cycle

1. **Work extraction**
 - Minimal volume, intake valve opens

2. **Work extraction**
 - Filling cylinder, then intake valve closes

3. **Work extraction**
 - Valves closed, constant mass expansion

4. **Work extraction**
 - Maximal volume, exhaust valve opens

5. **Work extraction**
 - Cut-off volume, exhaust valve closes
Pressure trace

- Intake
- Pressure
- Intake cutoff
- Exhaust

Time (rotation of crankshaft):
- 0
- 90
- 180
- 270
- 360

Steps:
1. Exhaust
2. Intake
3. Pressure decrease
4. Intake cutoff
5. Pressure increase
Efficiency discussion

• Intake cutoff, incomplete expansion
 – Leaves some pressure unutilized
 – Allows larger mass flow (intake valve open longer, more mass into cylinder each stroke)
• Intake and discharge valve leakage
• Heat conduction into expander
• Heat transfer to and from cylinder walls and piston head
• Dead volume leaves cooled helium behind which mixes with intake
Helium expansion example

<table>
<thead>
<tr>
<th>Helium gas inlet conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>P (bar)</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>16.00</td>
</tr>
</tbody>
</table>

Isentropic expansion to 1.4 bar

| 1.40 | 11.30 | 71.94 | **13.74** find properties as fn of P, s |

So isentropic $\Delta h =$ 97.06

Let efficiency = 0.75

Then real $\Delta h =$ 72.80

<table>
<thead>
<tr>
<th>Exhaust (using P-out and real Δh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P (bar)</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>1.40</td>
</tr>
</tbody>
</table>
Isenthalpic expansion

• Expansion through a valve does no work, and neither adds nor removes energy
 – Process is isenthalpic

• Enthalpy of the perfect gas is a function of temperature alone
 – Isenthalpic process of perfect gas does not change the temperature

• Real fluids may change temperature via an isenthalpic expansion
 – Joule-Thomson effect

\[\frac{\frac{\partial T}{\partial P}}{P} = 0 \]
Joule-Thomson expansion

• In many real fluids, including helium near the liquid-vapor dome (see T-s diagram), isenthalpic expansion may provide temperature drop
 – Not as efficient of isentropic expansion
 – But very convenient and easy (no moving parts)

• Joule-Thomson expansion through a valve is said to be through a “J-T valve”
T-s diagram for helium (closer look)
Helium JT inversion curve

• Note that lines of constant enthalpy are not horizontal (not constant temperature) on the previous T-s diagram.

• Movement along a line of constant enthalpy with a pressure change (isenthalpic expansion or compression) may result in a temperature increase or decrease.

• The curve demarking where \(\frac{dP}{dT} \bigg|_h < 0 \) and where \(\frac{dP}{dT} \bigg|_h > 0 \)

is called the “Joule-Thomson inversion curve”.

January, 2017
USPAS
Thermodynamics for Cryogenics
Tom Peterson
Turboexpander

- Linde turbine at right
- Expansion turbines are typically used in helium refrigerators larger than about 500 W.
- Real efficiencies (relative to isentropic) are 60% to 80%
A simplified real helium cycle
Klaus D. Timmerhaus and Thomas M. Flynn, Cryogenic Process Engineering, p.126
A more typical modern helium cycle

(but still simplified, from Linde Kryotechnik, AG)

- The “Claude process”, shown to the right, includes intermediate temperature expanders
- Modern cryoplants follow this pattern
- The HERA plants each have 7 turboexpanders
Cold box losses
Helium cycle efficiency

<table>
<thead>
<tr>
<th></th>
<th>RHIC</th>
<th>CEBAF</th>
<th>HERA</th>
<th>LEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equivalent capacity at 4.5K (KW)</td>
<td>25</td>
<td>13</td>
<td>8.4 per coldbox</td>
<td>6 per coldbox</td>
</tr>
<tr>
<td>Power required in W/W</td>
<td>450</td>
<td>350</td>
<td>285</td>
<td>230</td>
</tr>
<tr>
<td>Efficiency</td>
<td>16%</td>
<td>20%</td>
<td>25%</td>
<td>30%</td>
</tr>
</tbody>
</table>
References

Question for discussion tomorrow

“Square wave engine”
Square wave engine illustrates an interesting thermodynamics problem

- “Square wave” engine problem
 - Suppose intake valve is open for entire 180 degree intake stroke
 - No closed-cylinder expansion
 - Intake valve closes, then exhaust valve opens, so cylinder contents blow down from intake pressure to discharge pressure
Intake valve open 180 degrees

Fill cylinder with intake valve open, then open exhaust valve
Square wave pressure trace

![Graph showing a square wave pressure trace with time (rotation of crankshaft) on the x-axis and pressure on the y-axis. The graph shows intake, pressure, and exhaust phases.](Image)

January, 2017
USPAS
Thermodynamics for Cryogenics
Tom Peterson
Square wave problem

• Entire intake stroke at higher pressure than entire discharge stroke
• Engine clearly does work, generates power
• But no isentropic expansion
 – No closed-cylinder expansion of any kind
• Where does power come from? What gas properties change, and how? We’ll discuss that tomorrow.