Near Experimental Hall Laser Systems

October 18, 2008

- NEH Laser System
- Laser Optical Transport Design
- Laser Controls and Interface
- Discussion of Laser Parameters for Experiments
NEH Laser System and Optical Transport

Laser Hall

Hutch 1
Hutch 2
Hutch 3

October 18, 2008
NEH Laser Systems

Greg Hays
haysgr@slac.stanford.edu
Laser Conceptual Design

5 W Nd:YVO₄

30 fs Ti:sapphire Oscillator 800 nm

Pulse Stretcher
30 fs Bandwidth

Dazzler

20 W Nd:YLF Pump Laser @ 527 nm 1.2 kHz

Regenerative Amplifier
1 kHz, <5 mJ

Pulse Cleaner

Multi-Pass Preamplifier
10-30 Hz, <100 mJ

Optical Transport

Pulse Compressor
(Single Grating)

Harmonics

Topaz OPA

300 mJ Nd:YAG Pump Laser @ 532 nm 10-30 Hz

OR

120 mJ Nd:YAG Pump Laser @ 532 nm, 120 Hz

300 mJ Nd:YAG Pump Laser @ 532 nm 10-30 Hz

120 mJ Nd:YAG Pump Laser @ 532 nm, 120 Hz

300 mJ Nd:YAG Pump Laser @ 532 nm 10-30 Hz
FY09 Laser Purchase

Laser Hall

Pulse Stretcher
30 fs Bandwidth

Regenerative Amplifier
1 kHz, <5 mJ

Pulse Cleaners

Optical Transport

Pulse Compressor (Single Grating)

Harmonics

5 W Nd:YVO₄

30 fs Mode
Locked Ti:sapp @ 800 nm

20 W Nd:YLF Pump
Laser @ 527 nm 1.0 kHz

DIAGNOSTIC SUITE
-Spectrometer
-Autocorrelator
-Frog
-Beam Analyzer
-Power Meters
-Oscilloscopes

Laser Hall

Hutch 1 & 2

October 18, 2008
Greg Hays
NEH Laser Systems
haysgr@slac.stanford.edu
Master Oscillator and RF Synchronization

Femtolaser Synergy 20
- 780 nm Operation
- 68 MHz Pulse Rate Frequency
- Pulse width: <20 fs
- Bandwidth: >40 nm FHWM
- >400 mW / 5.3 nJ/pulse

Femtolock Synchronization
- <100 fs timing jitter
- Lock to 476 MHz external source (7th harmonic of 68 MHz)
- Remote Control of Hardware
Coherent Legend Elite Amplifier

- Legend Elite Ti:sapphire Amplifier
- Single Amplification Stage
- Integrated Pump Laser
- 780 nm Operation
- 30, 120, or 1000 Hz rep rates
- 3.5 mJ per pulse with pulse cleaner
- Pulsewidth: 35 fs
- Contrast Ratio: $10^6:1$ (1ns after peak)
- Spatial Mode: TEM$_{00}$: $M^2 < 1.35$
- Energy Stability: <0.75%
Optical Schematic of Laser Transport

Stretcher and 1 kHz Regen Amplifier

20fs Ti:sapp Oscillator

Insertable Mirrors

To Hutch 1

To Hutch 3

Imaging Telescope

Laser Hall

VEC

Pol

Pockels cell

Hutch 2

SXR Chamber

Focusing Optics

Diagnostic Mirrors

2\omega VEC

Harmonics

Hutch 2 Table

Pulse Compressor

October 18, 2008

Greg Hays

NEH Laser Systems

haysgr@slac.stanford.edu
Controls Schematic for Laser Transport

\[\frac{\lambda}{2} - 1 \]

PM1

PM2

C1

C2

PM4

F2

Laser Hall

Hutch 2

Laser Oscillator Controls

Spectrometer

To Experiment

Harmonics

To Experiment

2\omega VEC

PM5

ESD 1.6-115-r0

Hutch 2

L1

L2

L3

M1

M2

M3

M4

L4

L5
EPICS Interface for Laser Controls

Please do NOT touch this screen unless you know what you are doing!!

Transport Tube

M18 M17 M16 C1 C2 C-IrisVCC Laser WP PM2 PM3 LEAVE CLOSED XCOR Shutter Close Open

M6 M5 M4 M3 LF L6 LC1 LC2 M2 M1 Fdbk Loop2

To The Cathode

25.083 uJ

Laser Power

VCC

VCC-WP

C1 C2 C-IrisVCC

Rst Rst Rst

Iris Web Cam

Cross Correlator

Oscillator Control

Tek Vid

Teking

Alignment Laser

PRODUCTION

laser_in20_main.ed

01/30/2008 14:27:07
EPICS Controls for Laser Positioning and Feedback Loops

CCD Frame Grabber Display

Motion Controls for Motors/Feedback Loops

October 18, 2008
NEH Laser Systems
Questions for Discussion

- What are your laser wavelength requirements beyond ω, 2ω, and 3ω?
- What pulse widths are required?
 - transform limited pulse
 - chirped pulse
- What focused spot sizes do you require?
 - FEL beams sizes at the interaction region
 - 10 μm FEL \rightarrow ~100 μm laser focus
 - 1 mm FEL \rightarrow ~1 mm laser focus
Questions for Discussion Continued

- Collinear vs. Non-collinear beam geometry
 - Absolute collinearity for ~100 μm focused spot sizes
 - Near collinear ($\sim 10^{-2}$ rad) for 1 mm focused beam sizes
- What are your wave-front requirements?

Please contact me if you have questions or optical design requirements.

Greg Hays

haysgr@slac.stanford.edu
Summary

Laser System Parameters
- 780 nm <3 mJ
- 780, 390, and 260 nm wavelengths
- 30-1000 Hz repetition rates

- Laser installation begins 1/09
- AMO experiments with NEH laser begin 5/09
- First LCLS science in 7/09
- SXR experiments with NEH laser begin 1/10