Single-crystal Diffraction
Outline

- Scientific Scope
- Time resolved Laue Diffraction
- Synchrotron Beamline characteristics
 (ESRF, APS, KEK-AR)
- expected LCLS performance
- 'future' LCLS capabilities
- previous Experiments
 (SPPS, Synchrotron)
- LCLS Experiments
- Conclusion
Scientific capabilities

- Protein crystals
 - ligand movement
 - complete 3-D reorganisation

- Small molecule crystals
 - structural changes
 - photo induced phase transition

- Inorganic crystals
 - shock waves
Why Laue?

- uses full X-ray flux – fast data collection
- gives maximum per shot coverage of reciprocal space
- single shot can give sufficient I/sigma
 - fast data collection
- allows self normalisation
 (intensity ratios/ energy)
- independent of machine fluctuations
 (single shot characterisation needed)
- less damage by optical pump pulses
Synchrotron Laue Diffraction

- Time resolved laue beamlines
 - ESRF
 - 10^{10} photons/pulse
 - 100 ps
 - 3% bandwidth
 - 1(3) kHz
 - APS
 - 10^{10} photons/pulse
 - 100 ps
 - 3% bandwidth
 - 1 kHz
 - KEK
 - 10^9 photons/pulse (13-20 keV)
 - 50 ps
 - 1 kHz
 - up to 15% bandwidth
LCLS – Expected Performance

- 10^{12} photons/pulse
- 0.8-8.4 keV
- 250 fs
- 0.3 % bandwidth
- 120 Hz

- coherent radiation
- few micron focus possible
- single pulse data acquisition
- 'energy resolved' Laue possible

- reflection conditions
 - 0.3% 8265-8290 eV (0.05°/0.1° at $\theta=15°/30°$)
 - 0.5% 8265-8315 eV (0.09°/0.2° at $\theta=15°/30°$)
X-ray spectrum comparison

ESRF - ID09b

Intensity

Energy (keV)

ESRF - ID09b

LCLS-FEL

SLAC
Office of Science/U.S. DOE

XPP workshop June 2008
Marc.Messerschmidt@desy.de

HELMHOLTZ
ASSOCIATION
TTF-CA Laue diffraction

ESRF ID09b
unpublished data
d=50 mm
beamsize 161x56 um
crystal 70x60x10 um
room temperature
measurement
50 ms at 1 kHz
<5·10^{10} photons on sample
~250 reflections measured
LCLS – extended operation

- energy of the e-beam
 shot by shot variation (+/-1% tuning possible)

- spontaneous radiation (1.5·10^8 photon/pulse)
 chirped single pulse
 tapered undulator modules
 broader bandwidth (>1%)
 smooth envelope
Wide bandwidth undulator performance

M. Tischer DESY-Hamburg – based on XFEL parameters
Time resolved studies

- APS (14-ID-B/BioCARS)
 - Protein Single Crystal (PYP, MbCO, Heme)
 - Small Molecule Single Crystal (Metallorganics)

- ESRF (ID09b)
 - Protein Single Crystal (MbCO)
 - Dynamics in solution (CH2I2 Isomers)
 - Photo induced Phase transitions (TTF systems)

- KEK - (PF-AR/NW14)
 - Protein Single Crystal (Hemoglobin)
 - shock induced deformations (CdS)
 - Small Molecule Single Crystal (Metallorganics)
 - Photo induced Phase transitions (TTF systems)
PtPOP Laue pattern

Philip Coppens et al.
unpublished data
difference image
KEK-AR NW14
5 pulses
<5 · 10^9 photons
Time resolved studies at SPPS

~2x10^6 photons/pulse 9.4 keV
220 x 500 µm² CCD with fiber-coupled phosphor
1% bandwidth at ~54 mm
300 s, 10 Hz, ΔΦ ~24°

Laser off Laser on (Δt=-1ns)

Christian Blome, Thomas Tschentscher (DESY)
Simone Techert (MPI for biophysical Chemistry, Göttingen)
Time Resolved 'Laue' Crystallography at LCLS

Simone Techert (MPI for biophysical Chemistry, Göttingen)
Conclusion

- Laue like diffraction uses full flux
 broadband can further increase data per shot

- applicable to a wide range of single crystals
 small molecules, proteins, inorganic

- well established and growing field
 ESRF, KEK, APS

- per bunch characterisation needed
 e-beam diagnostics
 single shot spectrometer?
Acknowledgement

Shin-ichi Adachi
Philip Coppens
David Fritz
Jerry Hastings
Jochen Schneider
Peter Stefan
Simone Techert
Thomas Tschentscher
Michael Wulff

ID09b
NW14
BioCARS