X-ray Coherence methods for LCLS

Ian Robinson
Ross Harder
Steven Leake
Marcus Newton
Harshil Pipalia

London Centre for Nanotechnology
Diamond Light Source

LCLS Coherence Workshop
October 2008
Discussion Questions

• Coherent x-ray diffraction imaging
• How much information in a single shot?
• 3D solution from a single shot?
• XPCS or Imaging approach?
• Real or Reciprocal space view?
• Planning for initial LCLS experiments
Diamond
in-vacuum
X-ray
Undulator
Coherent X-ray Diffraction Imaging

APS $\xi_{\text{HOR}} = 20\mu\text{m}$, focus to $1\mu\text{m}$
LCLS $\xi_{\text{HOR}} > 500\mu\text{m}$, focus to $0.1\mu\text{m}$

Nothing moves!

High DR pixel detector

Coherence defining aperture

Sample grain

X-ray beam

Rotational axis

CCD X-ray detector
Chemically Synthesized Silver Nanocubes

Yugang Sun and Younan Xia,
Rocking scan of Ag cubes with 0.01° steps
Gold nanocrystal reconstruction
showing support used for 20 HIO followed by 10 ER
Coherent Diffraction from Crystals

Fourier Transform

I. K. Robinson, LCLS Oct 2008
Diffraction by Strain of Point Defect

\[A \sim \sum e^{i\mathbf{Q} \cdot (\mathbf{R}_j + \mathbf{u}_j)} \approx \sum e^{i\mathbf{Q} \cdot \mathbf{R}_j} (1 + i\mathbf{Q} \cdot \mathbf{u}_j) \]

Imaginary density

\[+ \]

\[- \]

[Diagram of normalized intensity with arrows and concentric circles]
VLS growth of nanowires
Reconstruction of InP nanowire
CVD on Si, Suneel Kodambaka, UCLA

InP nanowires grown on Si (111)
Phase structure in nanowires
GaAs Nanowire “Barcode”
Vincent Favre-Nicolin, Joel Eymery (CEA), Rienk Algra (Philips), Ross Harder
Dark Field TEM of GaAs Nanowires
Models of Barcode Diffraction
(111) wires at (11-1) reflection

- Twinned stacking sequence
- Deformation faults

I. K. Robinson, LCLS
Antiphase domains in faulted wires?
Contact strain of Zeolite ZSM-5
with Hyunjung Kim and K. B. Yoon at Sogang University
ZnO Sample Preparation

Dimensions: 4-5µm

I. K. Robinson, LCLS
Density sections ZnO-39 (010)
Marcus Newton and Steven Leake (in preparation, 2008)
Phase maps from 2 Bragg peaks
Blue-Red is +2 radians. Slice at -1500nm from centre ZnO-5 -39

\[\varphi = \vec{Q} \cdot \vec{u(r)} \]

Q=(100)

Q=(010)
Typical displacement field

$Q \cdot u \text{ small}$

$Q \cdot u \text{ large}$

$Q = (010)$
How to extract the contrast data
Five Bragg peaks

002 no fringe visibility

010 & 100 good fringe visibility

101 & 011 diminished fringe visibility but fringes still evident

010:011 & 101:100 show complementary fringes but not between each other

Error in coordinate transform ruled out

010 and 100 reflections fringe spacing difference ~ 20%
Fringe Visibility 96±2% @010
How much information in a single shot?

• Phase problem can be solved beforehand:
 – Low dose rocking curve before ‘shot’
 – Ptychography scan before ‘shot’

• Phased diffraction allows full imaging during transient

• Phases are little changed during perturbation
 – localised change in real space affects all of reciprocal space
 – traditional “difference map” principle
3D solution from a single shot?

• Keyhole imaging with curved beam
 – multiple views of sample?

• Reconstruction is of exit wave field
 – can’t propagate to general 3D object

• Phase problem easier to solve for real objects
 – logo physics and cowboys

• Free-space propagation of phased wave field
 – valuable for ptychography probe
XPCS or Imaging approach?

• Fluctuation-dissipation theorem:
 – transient response “=” fluctuation due to noise
 – complex susceptibility, eg shear modulus
 – 1-point or 2-point correlations?

• Beam ‘heating’ anyway, use as impulse:
 – Split-and-delay technique
 – “Dusty Mirror” experiment
“Dusty Mirror” experiment
Loss of fringe visibility in (ps) time
Real or Reciprocal space view?

• Free to choose once phase problem is solved
 – Low dose rocking curve before ‘shot’
 – Ptychography scan before ‘shot’
• “Dirty mirror” was recip space information
 – OK because many similar samples in beam
• Real space avoids drifts, pulse-to-pulse variations
 – good for localised changes, rare events
• Reciprocal space better for self-similar objects
 – average over multiple copies
Generic aspects of speckle

• First-order change is of intensity
• Second-order change in speckle positions
 – contrast is mostly sensitive to this
• ‘Persistent’ speckle observation
 – Martin Grant & Mark Sutton
• Contrast useful to quantify degree of coherence of the beam
Planning for initial LCLS experiments

• CXI and PCS not ready in initial phase
• XPP will be first diffraction station
 – Area detector can measure CXD pattern
 – Laser pump can ‘activate’ sample
• Fabricated Gold nanocrystal arrays
 – control size, shape, orientation (est 200nm)
• Pre-align each under low dose for phasing
• Explode with full pulse: changes or not?
 – Observe melt? front after laser pump
e-beam Lithography “Lift-off” method

Si (100) wafer
10(+-1) mm x 10(+-1) mm square/rectangle

Thermally grown Si O2,
~ 100nm thick
(Back side oxide remaining)

Au film 20nm thick (piece-to-piece accuracy within 10%?)
(with and without adhesion layer of Cr or Ti 2nm thick)
(EB or thermally evaporated)

ZEP (EB) resist for lift-off
Top View of basic layout plan with pickup marks

50 μm interval dot array with $31 \times 31 = 961$ dots

Size to be discussed
Top View of chip layout
S. Shimamoto (Waseda), T. Matsuura (UCL), Sept 2008

hexagon dots square dots triangle dots
1 um^2 area dots
0.25 um^2 area dots
4 um^2 area dots

Shimamoto-Matsuura-Robinson, September 2008

I. K. Robinson, LCLS Oct 2008
Dewetting to coalesce into crystals
Garth Williams thesis (2005)
Discussion Questions

- Coherent x-ray diffraction
- How much information in a single shot?
- 3D solution from a single shot?
- XPCS or Imaging approach?
- Real or Reciprocal space view?
- Planning for initial experiments